[1] SHEN Y, HUANG C H, HUANG F, et al. Research progress of infrared and visible image fusion technology[J]. Infrared and Laser Engineering, 2021, 50(9): 152-169 (in Chinese). 沈英, 黄春红, 黄峰, 等. 红外与可见光图像融合技术的研究进展[J]. 红外与激光工程, 2021, 50(9): 152-169. [2] CHEN J, WU K L, CHENG Z, et al. A saliency-based multiscale approach for infrared and visible image fusion[J]. Signal Processing, 2021, 182: 107936. [3] YANG Y, LIU J X, HUANG S Y, et al. Infrared and visible image fusion via texture conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(12): 4771-4783. [4] BAI Y, HOU Z Q, LIU X Y, et al. An object detection algorithm based on decision-level fusion of visible light image and infrared image[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(6): 53-59, 100 (in Chinese). 白玉, 侯志强, 刘晓义, 等. 基于可见光图像和红外图像决策级融合的目标检测算法[J]. 空军工程大学学报(自然科学版), 2020, 21(6): 53-59, 100. [5] ZHANG H, XU H, XIAO Y, et al. Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12797-12804. [6] LIU Y, CHEN X, PENG H, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191-207. [7] [8] [9] [10] LI H, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2018: 2018Dec18. [11] [12] RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1-4): 259-268. [13] [14] TOET A. Image fusion by a ratio of low-pass pyramid[J]. Pattern Recognition Letters, 1989, 9(4): 245-253. [15] SHREYAMSHA KUMAR B K. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 2015, 9(5): 1193-1204. [16] LIU Y, LIU S P, WANG Z F. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. [17] MA J Y, CHEN C, LI C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31: 100-109. [18] MA J Y, YU W, LIANG P W, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. [19] MA J Y, XU H, JIANG J J, et al. DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4980-4995. [20] MA J Y, ZHANG H, SHAO Z F, et al. GANMcC: A generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14. [21] |