航空学报 > 2022, Vol. 43 Issue (10): 527613-527613   doi: 10.7527/S1000-6893.2022.27613

CMAS环境下热障涂层的损伤机理及防护策略

杨姗洁1,2, 严旭东1,3, 郭洪波1,3   

  1. 1. 北京航空航天大学 材料科学与工程学院, 北京 100191;
    2. 北京钢研高纳科技股份有限公司, 北京 100081;
    3. 高温结构材料与涂层技术工信部重点实验室, 北京 100191
  • 收稿日期:2022-06-13 修回日期:2022-06-28 发布日期:2022-07-25
  • 通讯作者: 郭洪波,E-mail:guo.hongbo@buaa.edu.cn E-mail:guo.hongbo@buaa.edu.cn
  • 基金资助:
    国家自然科学基金(51590890)

Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack

YANG Shanjie1,2, YAN Xudong1,3, GUO Hongbo1,3   

  1. 1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
    2. Gaona Aero Material Co., Ltd., Beijing 100081, China;
    3. Key Laboratory of High Temperature Structure Materials and Coatings Technology, Ministry of Industry and Information Technology, Beijing 100191, China
  • Received:2022-06-13 Revised:2022-06-28 Published:2022-07-25
  • Supported by:
    National Natural Science Foundation of China (51590890)

摘要: 随着先进航空发动机向高推重比和高热效率发展,涡轮前进口温度显著提高,航空发动机叶片热障涂层(TBCs)在高温服役过程中受火山灰、飞灰、跑道磨屑、工业烟尘、汽车尾气及PM2.5等环境沉积物的侵蚀愈来愈严重。这些沉积物的主要化学成分为CaO-MgO-Al2O3-SiO2(CMAS),其熔点约为1 240℃,远低于发动机的服役温度。环境CMAS被吸入发动机中后,将迅速熔融并渗入TBCs结构内部。一方面,CMAS对叶片表面造成物理冲击与破坏,熔融态的CMAS还会导致气膜冷却孔堵塞,引起冷效降低与叶片温度-应力场的改变;另一方面,熔融CMAS与叶片涂层发生化学反应,导致叶片TBCs腐蚀剥落及过早失效,服役寿命大幅度下降。解决叶片TBCs表面CMAS沉积和腐蚀的问题是目前先进航空发动机TBCs研究领域的重点和难点,而掌握不同环境下CMAS的物理化学特性更是研制抗CMAS热障涂层的基础。本文阐述了CMAS的成分与流变特性及TBCs在CMAS环境下的热化学、热力学失效机理,并简述了目前国际上有关涂层组织结构优化、阻渗层和牺牲层等CMAS防护策略。

关键词: 先进航空发动机, 热障涂层(TBCs), CaO-MgO-Al2O3-SiO2(CMAS), 损伤机理, 防护策略

Abstract: With the trend of higher thrust-weight ratio and thermal efficiency of aero-engine, the turbine inlet temperature increases significantly. Thermal Barrier Coatings (TBCs) of aeroengine blades are increasingly corroded by environmental deposits such as volcanic ash, fly ash, runway debris, industrial smoke, automobile exhaust and PM2.5 during the high-temperature service. The chemical composition of the silicate ash is mostly CaO-MgO-Al2O3-SiO2 (CMAS), and their melting point is about 1 240℃, which is far lower than the service temperature of aeroengine. Once sucked into aero-engine at such high temperature, CMAS can rapidly molten and infiltrates into the TBCs structure. On the one hand, CMAS causes physical impact and damage on the TBCs surface, and the molten CMAS tends to cause blocking of cooling holes in turbine blades, which results in decrease of cooling efficiency, change of temperature and stress distribution in blades. On the other hand, the molten CMAS chemically reacts with the blade coatings, resulting in corrosion spallation and premature failure of TBCs. The durability of TBCs is significantly reduced due to the CMAS deposition. It is very important to make the protection strategy to constrain the adherence and corrosion of molten CMAS on TBCs at high temperature to ensure the development of advanced aero-engine. Besides, mastering the physical and chemical properties of CMAS in different environments is the basis for developing CMAS-resistant TBCs. This paper focuses on the summary of the composition and rheological properties of CMAS and the thermo-chemical and thermo-mechanical failure mechanism of TBCs in CMAS environment. And the solutions to CMAS, such as coating structure optimization, adding permeability barrier layer and sacrificial layer are briefly overviewed.

Key words: advanced aircraft engine, Thermal Barrier Coatings (TBCs), CaO-MgO-Al2O3-SiO2 (CMAS), failure mechanism, protection strategy

中图分类号: