航空学报 > 2022, Vol. 43 Issue (5): 625731-625731   doi: 10.7527/S1000-6893.2021.25731

机器人先进制造与装配技术专栏

面向大型卫星的可移动混联机器人加工技术

张加波1, 刘海涛2, 乐毅1,3, 杨继之1, 易茂斌1, 王云鹏1, 柔磊1   

  1. 1. 中国空间技术研究院 北京卫星制造厂有限公司, 北京 100190;
    2. 天津大学 机构理论与装备设计教育部重点实验室, 天津 300072;
    3. 清华大学 机械工程系, 北京 100084
  • 收稿日期:2021-04-28 修回日期:2021-05-25 发布日期:2021-12-01
  • 通讯作者: 乐毅 E-mail:ley20@mails.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金(52075533,62003346)

Mobile hybrid robot processing technology for large satellites

ZHANG Jiabo1, LIU Haitao2, YUE Yi1,3, YANG Jizhi1, YI Maobin1, WANG Yunpeng1, ROU Lei1   

  1. 1. Beijing Spacecrafts, China Aerospace Technology, Beijing 100190, China;
    2. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, China;
    3. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2021-04-28 Revised:2021-05-25 Published:2021-12-01
  • Supported by:
    National Natural Science Foundation of China (52075533,62003346)

摘要: 大型卫星结构件加工过程中面临多次吊装和转移风险,针对"卫星不动,工具移动"制造方法定位误差大的问题,提出一种可移动混联机器人加工大尺寸结构件的新方法。基于全向移动平台与机器人视觉引导相结合的粗-精定位策略,采用初步定位和精确定位的"两步定位法"提高移动式混联机器人加工的定位精度。构建可移动混联机器人加工系统,并在大型卫星结构件上开展铣削验证实验。实验结果表明:移动式混联机器人提高了卫星舱体功能面的加工精度,1 600 mm×800 mm范围内4个压紧点的加工平面度达到0.08 mm,共面度达到0.2 mm,距离公差为0.6 mm。混联机器人的高刚度特性为实现卫星舱体高精、高效的原位加工提供了可行性。

关键词: 可移动机器人, 混联机器人, 大型卫星结构件, 铣削实验, 定位精度

Abstract: Large-scale satellite structural parts are faced with multiple hoisting and transfer risks during the processing. Aiming at the problem of large positioning errors in the "satellite not moving, tool moving" manufacturing method, this paper proposes a new method for processing large-size structural parts with a mobile hybrid robot. Based on the coarse-fine positioning strategy that combines the omni-directional mobile platform with robot vision guidance, the "two-step positioning method" of preliminary positioning and precise positioning is adopted to improve the positioning accuracy of mobile hybrid robot processing. A mobile hybrid robot processing system was constructed, and milling verification experiments on large satellite structures were carried out. The experimental results show that the mobile hybrid robot improves the processing accuracy of the functional surface of the satellite cabin. The processing flatness of the four pressing points within the range of 1600 mm×800 mm reaches 0.08 mm, the coplanarity reaches 0.2 mm, and the distance tolerance is 0.6 mm. The high rigidity of the hybrid robot provides the feasibility for realizing high-precision and efficient in-situ machining of the satellite cabin.

Key words: mobile robot, hybrid robot, large satellite structural parts, milling experiment, positioning accuracy

中图分类号: