航空学报 > 2022, Vol. 43 Issue (5): 625815-625815   doi: 10.7527/S1000-6893.2021.25815

机器人先进制造与装配技术专栏

机器人铣削系统精度控制方法及试验

李宇飞1, 田威1, 李波1, 张楠2   

  1. 1. 南京航空航天大学 机电学院, 南京 210016;
    2. 西门子(中国)有限公司, 北京 100102
  • 收稿日期:2021-05-14 修回日期:2021-06-29 发布日期:2021-08-25
  • 通讯作者: 李波 E-mail:libo_nj@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金(52005254,52075256);江苏省自然科学基金(BK20190417)

Accuracy control method and experiment of robot milling system

LI Yufei1, TIAN Wei1, LI Bo1, ZHANG Nan2   

  1. 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Siemens (China) Co., Ltd, Beijing 100102, China
  • Received:2021-05-14 Revised:2021-06-29 Published:2021-08-25
  • Supported by:
    National Natural Science Foundation of China (52005254, 52075256); Natural Science Foundation of Jiangsu Province (BK20190417)

摘要: 新一代航空航天器大量使用一体化复杂大部件作为主要结构,传统机床难以满足其高质量、高效率、高柔性的加工需求,以工业机器人为载体的加工系统是解决该问题的有效新途径,但面临机器人精度低、刚性差的瓶颈。为提高工业机器人的加工精度,搭建了基于数控系统的机器人铣削系统,提出了关节空间-笛卡尔空间分级精度补偿方法。静载试验结果表明,机器人的重复定位精度由0.154 mm提高到0.039 mm,提高了74.68%;绝对定位精度由1.307 mm提高到0.156 mm,提高了88.06%;轨迹精度由1.346 mm提高到0.181 mm,提高了86.55%,实现了点位与轨迹精度的在线实时补偿。铣削试验结果表明,复合材料舱段铣削精度达到0.22 mm,表面粗糙度优于Ra4.8,机器人铣削系统能够满足航空航天零部件的加工精度要求。

关键词: 机器人铣削, 高精度加工, 精度补偿, 误差相似性, 轨迹精度

Abstract: The new generation of aerospace vehicles use a large number of integrated complex components as their main structure. Therefore, the traditional machine tools are difficult to meet the high machining quality, high efficiency, and high flexibility requirements of complex components. Although faced with the bottleneck of low precision and poor rigidity of the robot, the equipment of machining system, based on industrial robot is an effective new way to solve this problem. In order to improve the machining accuracy of industrial robot, a robot milling system based on Siemens 840Dsl CNC system is built. By using the joint-Cartesian space combined accuracy compensation method, the repetitive positioning accuracy of the robot is increased by 74.68% from 0.154 mm to 0.039 mm, the absolute positioning accuracy increased by 88.06% from 1.307 mm to 0.156 mm, and the trajectory accuracy increased by 86.55% from 1.346 mm to 0.181 mm. The on-line real-time compensation of positions and trajectories is realized. The milling experimental results show that the milling accuracy of the composite cabin reaches 0.22 mm, and the surface roughness is better than Ra4.8. Thus, robot milling system meets the requirements of aerospace parts processing.

Key words: robot milling, high precision machining, accuracy compensation, error similarity, trajectory accuracy

中图分类号: