[1] 马威,过海峰,姜宁.海军通用无人机及其起降方式分析[J].飞航导弹, 2006(12):37-40, 49. MA W, GUO H F, JIANG N. Analysis on the universal unmanned air vehicle of navy and its take-off/landing form[J]. Winged Missiles Journal, 2006(12):37-40, 49(in Chinese). [2] 孙健,倪训友.无人机国内外发展态势及前沿技术动向[J].科技导报, 2017, 35(9):109. SUN J, NI X Y. Development situation at home/abroad and technology trend of unmanned aerial vehicle[J]. Science&Technology Review, 2017, 35(9):109(in Chinese). [3] 罗利龙,王立凯,聂小华.一种面向模块化可重构机翼的分步补偿优化方法[J].北京航空航天大学学报, 2019, 45(5):930-935. LUO L L, WANG L K, NIE X H. A step-compensation optimization method for modular reconfigurable airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5):930-935(in Chinese). [4] 余雄庆,张帅.面向客机族的总体参数优化方法[J].南京航空航天大学学报, 2012, 44(5):718-724. YU X Q, ZHANG S. Optimization for conceptual design of airliner family[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2012, 44(5):718-724(in Chinese). [5] 雍明培,余雄庆.飞机族的机翼气动外形优化方法[J].南京航空航天大学学报, 2008, 40(4):475-479. YONG M P, YU X Q. Wing aerodynamic optimization method for aircraft family design[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2008, 40(4):475-479(in Chinese). [6] 张立丰,姚卫星,邹君.模块化飞机结构优化设计的等效多工况法[J].航空学报, 2015, 36(3):834-839. ZHANG L F, YAO W X, ZOU J. Equivalent multi-case optimization architecture for modular aircraft structures[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):834-839(in Chinese). [7] 张琳,韩晓明,李彦彬.模块化、系列化防空导弹应用与发展研究[J].飞航导弹, 2014(10):29-33. ZHANG L, HAN X M, LI Y B. A research on the application and development of modular and series air defense missile[J]. Aerodynamic Missile Journal, 2014(10):29-33(in Chinese). [8] 张纯学.美国和欧洲的模块化导弹计划[J].飞航导弹, 2006(3):6-8. ZHANG C X. Modular missile programs of the US and Europe[J]. Winged Missiles Journal, 2006(3):6-8(in Chinese). [9] 雍明培,余雄庆.基于模块化产品平台的飞机族设计技术探讨[J].飞机设计, 2006, 26(4):30-37. YONG M P, YU X Q. Aircraft family design using modular product platform methodology-An exploratory study[J]. Aircraft Design, 2006, 26(4):30-37(in Chinese). [10] ALLISON J, ROTH B, KOKKOLARAS M, et al. Aircraft family design using decomposition-based methods:AIAA-2006-6950[R]. Reston:AIAA, 2006. [11] CABRAL L V, PAGLIONE P, DE MATTOS B S. Multi-objective design optimization framework for conceptual design of families of aircraft:AIAA-2006-1328[R]. Reston:AIAA, 2006. [12] 雍明培.基于模块化通用平台策略的飞机族设计优化方法[D].南京:南京航空航天大学, 2008. YONG M P. Design optimization method for modular platform-based aircraft family[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008(in Chinese). [13] 李苏杭,李铁.飞机模块化结构平台构造优化方法[J].江苏航空, 2015, 4:9-13. LI S H, LI T. The construction and optimization method of modular aircraft structural platform[J]. Jiangsu Aviation, 2015, 4:9-13(in Chinese). [14] 石荣荣,杨成博,丛佩玺,等.模块化技术在飞机EWIS研制中的应用[J].飞机设计, 2020, 40(5):57-61. SHI R R, YANG C B, CONG P X, et al. Application of modularization technology in aircraft EWIS development[J]. Aircraft Design, 2020, 40(5):57-61(in Chinese). [15] 周皓宇.飞翼布局无人机族总体参数优化方法[D].南京:南京航空航天大学, 2019. ZHOU H Y. Optimization method for conceptual design of flying wing UAV family[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019(in Chinese). [16] 岳志星.飞翼布局无人机族结构初步设计与优化[D].南京:南京航空航天大学, 2019. YUE Z X. Preliminary design and optimization of UAV family structure with flying wing layout[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019(in Chinese). [17] PATTERSON M, PATE D, GERMAN B. Performance flexibility of a reconfigurable family of UAVs:AIAA-2011-6851[R]. Reston:AIAA, 2011. [18] PATE D J, PATTERSON M D, GERMAN B J. Optimizing families of reconfigurable aircraft for multiple missions[J]. Journal of Aircraft, 2012, 49(6):1988-2000. [19] SCHMITT V, CHARPIN F. Pressure distributions on the ONERA-M6-wing at transonic Mach numbers:AGARD AR-138[R]. Paris:AGARD, 1979. [20] 刘怡彪,薛珂,王春科.国外无人机发展趋势研究[J].工程与试验, 2020, 60(3):41-42, 64. LIU Y B, XUE K, WANG C K. Research on the development trend of foreign UAV[J]. Engineering&Test, 2020, 60(3):41-42, 64(in Chinese). [21] 贾高伟,郭正.美军XQ-58A项目与应用模式分析[J].国防科技, 2021, 42(1):1-6. JIA G W, GUO Z. Analysis of the XQ-58A project of the US military and its modes of application[J]. National Defense Technology, 2021, 42(1):1-6(in Chinese). [22] 魏闯,杨龙,李春鹏,等. ARI_OPT气动优化软件研究进展及应用[J].航空学报, 2020, 41(5):623370. WEI C, YANG L, LI C P, et al. Research progress and application of ARI_OPT software for aerodynamic shape optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623370(in Chinese). [23] 韩忠华,许晨舟,乔建领,等.基于代理模型的高效全局气动优化设计方法研究进展[J].航空学报, 2020, 41(5):623344. HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623344(in Chinese). [24] 李春鹏,张铁军,钱战森.基于代理模型的自适应后缘翼型气动优化设计[J].航空科学技术, 2019, 30(11):41-47. LI C P, ZHANG T J, QIAN Z S. Aerodynamic optimization design of the airfoil with adaptive trailing edge based on surrogate model[J]. Aeronautical Science&Technology, 2019, 30(11):41-47(in Chinese). |