[1] OPROMOLLA R, FASANO G, RUFFINO G. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations[J]. Progress in Aerospace Sciences, 2017, 93:53-72. [2] 刘付成. 人工智能在航天器控制中的应用[J].飞控与探测, 2018, 1(1):16-25. LIU F C. Application of artificial intelligence in spacecraft[J]. Flight control and detection, 2018, 1(1):16-25(in Chinese). [3] 岳晓奎, 张滕. 在轨服务软体机器人应用展望[J]. 飞控与探测, 2020, 3(1):1-7. YUE X K, ZHANG T. Soft robots for on-orbit service[J]. Flight Control & Detection, 2020, 3(1):1-7(in Chinese). [4] 范斌, 于起峰. 卫星平台运动对高分辨率光学遥感成像系统影响分析[J]. 中国空间科学技术, 2017, 37(3):86-92. FAN B, YU Q F. Simulation analysis of platform vibration on image quality of satellite-based high-resolution optical system[J]. Chinese Space Science and Technology, 2017, 37(3):86-92(in Chinese). [5] 王大轶, 鄂薇, 邹元杰, 等. 利用非合作航天器双特征结构的相对姿态确定方法[J]. 飞控与探测, 2020, 3(1):18-26. WANG D Y, E W, ZOU Y J, et al. Relative attitude determination method of non-cooperative spacecraft using dual feature structure[J]. Flight Control & Detection, 2020, 3(1):18-26(in Chinese). [6] 刘宗明, 曹姝清, 张宇, 等. 非合作航天器逆深度参数化姿态估计[J]. 光学精密工程, 2017, 25(2):451-459. LIU Z M, CAO S Q, ZHANG Y, et al. Inverse depth parametrization for attitude estimation of a non-cooperative spacecraft[J]. Optics and Precision Engineering, 2017, 25(2):451-459(in Chinese). [7] ZHOU Z, SANG N, HU X. Global brightness and local contrast adaptive enhancement for low illumination color image[J]. Optik, 2014, 125(6):1795-1799. [8] LIN S C F, WONG C Y, RAHMAN M A, et al. Image enhancement using the averaging histogram equalization (AVHEQ) approach for contrast improvement and brightness preservation[J]. Computers & Electrical Engineering, 2015, 46:356-370. [9] LV F, LU F. Attention-guided low-light image enhancement[J]. arXiv preprint:1908.00682, 2019. [10] GUO X, LI Y, LING H. LIME:Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2016, 26(2):982-993. [11] WEI C, WANG W, YANG W, et al. Deep retinex decomposition for low-light enhancement[C]//British Machine Vision Conference, 2018. [12] GUO Y, KE X, MA J, et al. A pipeline neural network for low-light image enhancement[DB/OL]. IEEE Access, 2019, 7:13737-13744. [13] JIANG Y, GONG X, LIU D, et al. Enlightengan:Deep light enhancement without paired supervision[DB/OL]arXiv:1906.06972,2019. [14] 江泽涛, 覃露露. 一种基于U-Net生成对抗网络的低照度图像增强方法[J]. 电子学报, 2020, 48(2):258-264. JIANG Z T, QIN L L. Low-light image enhancement method based on U-Net generative adversarial network[J]. Acta Electronic Sinica, 2020, 48(2):258-264(in Chinese). [15] 陈榆琅, 高晶敏, 张科备, 等. 基于生成对抗网络的空间卫星低照度图像增强[J/OL]. 中国空间科学技术, 2020,https://kns.cnki.net/kcms/detail/11.1859.V.20200921.1709.002.html. CHEN Y L, GAO J M, ZHANG K, ZHANG Y. Low-light image enhancement of space satellites based on GAN[J/OL]. Chinese Space Science and Technology, 2020, https://kns.cnki.net/kcms/detail/11.1859.V.20200921.1709.002.html (in Chinese). [16] GUO C L, LI C Y, HUO J C. Zero-reference deep curve estimation for low-light Image enhancement[DB/OL]. arXiv preprint:2001.06826v2,2020. [17] 朱晏辰. 基于SLAM的非合作目标相对位姿测量研究[D].哈尔滨:哈尔滨工业大学, 2018. ZHU Y C. Research on measurement of relative pose for non-cooperative space targets based on SLAM[D]. Harbin:Harbin Institute of Technology, 2018(in Chinese). [18] 周朋博, 刘晓峰, 蔡国平. 基于ORB-SLAM的低照度空间非合作目标的姿态估计[J]. 动力学与控制学报, 2021,19(1):68-74. ZHOU P B, LIU X F, CAI G P. Attitude estimation of an non-cooperative spacecraft in low-light condition based on ORB-SLAM[J]. Journal of Dynamic and Control, 2021,19(1):68-74(in Chinese). [19] MEHREGAN D, PANAGIOTIS T. ORB-SLAM applied to spacecraft non-cooperative rendezvous[C]//AIAA SciTech Forum, 2018 Space Flight Mechanics Meeting, 2018. [20] 高翔, 张涛. 视觉SLAM十四讲从理论到实践[M]. 北京:电子工业出版社, 2017:64-76. GAO X, ZHANG T. Visual SLAM 14 lectures from theory to practice[M]. Beijing:Electronic Industry Press, 2017:64-76(in Chinese). [21] XIANG L Y B, DENG Y B, DAI B, et al. Real or not real, that is the question[C]//International Conference on Machine Learning (ICML), 2020. [22] TAMAR R, TALI D, TOMER M. SinGAN:Learning a generative model from a single natural image[C]//IEEE International Conference on Computer Vision, 2019. [23] WANG C Y, CHANG X, XIN Y. Evolutionary generative adversarial networks[J]. IEEE Transactions on Evolutionary Computation, 2019, 23:921-934. [24] CARLOS C, RICHARD E, JUAN J, et al. ORB-SLAM3:An accurate open-source library for visual, visual-inertial and multi-map SLAM[EB/OL]. arXiv preprint:2007.11898,2020. [25] 向奉卓, 李广云, 王力, 等. 具备尺度恢复的单目视觉里程计方法[J]. 测绘科学技术学报, 2018, 35(5):462-466. XIANG F Z, LI G Y, WANG L, et al. Monocular visual odometry with absolute scale recovery[J]. Journal of Geomatics Science and Technology, 2018, 35(5):462-466(in Chinese). [26] 刘宗明, 张宇, 卢山, 等. 非合作旋转目标闭环检测与位姿优化[J]. 光学精密工程, 2017, 25(4):504-511. LIU Z M, ZHANG Y, LU S, et al. Closed-loop detection and pose optimization of non-cooperation rotating targets[J]. Optics and Precision Engineering, 2017, 25(4):504-511(in Chinese). [27] 于浛, 魏喜庆, 宋申民, 等. 基于自适应容积卡尔曼滤波的非合作航天器相对运动估计[J]. 航空学报, 2014, 35(8):2251-2260. YU H, WEI X Q, SONG S M, et al. Relative motion estimation of non-cooperative spacecraft based on adaptive CKF[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2251-2260(in Chinese). |