[1] 刘具龙, 张璧, 白倩, 等. 钛合金铣削刀具/工件接触区域温度预测[J]. 航空学报, 2018, 39(12):422128. LIU J L, ZHANG B, BAI Q, et al. Temperature prediction of tool/workpiece contact zone in titanium milling[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):422128(in Chinese). [2] 陈燕, 杨树宝, 傅玉灿, 等. 钛合金TC4高速切削刀具磨损的有限元仿真[J]. 航空学报, 2013, 34(9):2230-2240. CHEN Y, YANG S B, FU Y C, et al. FEM estimation of tool wear in high speed cutting of Ti6Al4V alloy[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2230-2240(in Chinese). [3] KONG D D, CHEN Y J, LI N, et al. Tool wear monitoring based on kernel principal component analysis and v-support vector regression[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(1-4):175-190. [4] 王强. 基于深度学习的数控加工刀具寿命动态评估方法[D]. 南京:南京航空航天大学, 2019. WANG Q. Dynamic evaluation method of tool life in NC machining based on deep learning[D]. Nanjing:Nanjing University of Aeronautics & Astronautics, 2019(in Chinese). [5] SALONITIS K, KOLIOS A. Reliability assessment of cutting tool life based on surrogate approximation methods[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(5-8):1197-1208. [6] 倪金成. 数控加工刀具多失效形式状态监测[D]. 南京:南京航空航天大学, 2020. NI J C. Monitoring of Multiple Failure Forms of NC Cutting Tools[D]. Nanjing:Nanjing University of Aeronautics & Astronautics, 2020(in Chinese). [7] 隋少春, 许艾明, 黎小华, 等. 面向航空智能制造的DT与AI融合应用[J]. 航空学报, 2020, 41(7):624173. SUI S C, XU A M, LI X H, et al. Fusion application of DT and AI for aviation intelligent manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):624173(in Chinese). [8] TAO F, QI Q L, LIU A, et al. Data-driven smart manufacturing[J]. Journal of Manufacturing Systems, 2018, 48:157-169. [9] ZHOU Y Q, XUE W. Review of tool condition monitoring methods in milling processes[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96:2509-2523. [10] WANG G F, YANG Y W, XIE Q L, et al. Force based tool wear monitoring system for milling process based on relevance vector machine[J]. Advances in Engineering Software, 2014, 71:46-51. [11] 刘宇, 王迁, 刘阔, 等. 基于小波奇异性和支持向量机微铣刀破损检测[J]. 东北大学学报(自然科学版), 2017, 38(10):1426-1430. LIU Y, WANG Q, LIU K, et al. Micro milling cutter breakage detection based on wavelet singularity and support vector machine[J]. Journal of Northeastern University (Natural Science), 2017, 38(10):1426-1430(in Chinese). [12] CHEN J Q, CHEN H B, XU J J, et al. Acoustic signal-based tool condition monitoring in belt grinding of nickel-based superalloys using RF classifier and MLR algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(1-4):859-872. [13] CORNE R, NATH C, EL MANSORI M, et al. Study of spindle power data with neural network for predicting real-time tool wear/breakage during inconel drilling[J]. Journal of Manufacturing Systems, 2017, 43:287-295. [14] 牟文平. 数据驱动的数控加工刀具磨损量精确预测关键技术研究[D]. 南京:南京航空航天大学, 2020:9-11. MOU W P. Key technologies on data-driven real time prediction of tool wear for NC machining[D]. Nanjing:Nanjing University of Aeronautics &Astronautics, 2020:9-11(in Chinese). [15] WANG J J, MA Y L, ZHANG L B, et al. Deep learning for smart manufacturing:Methods and applications[J]. Journal of Manufacturing Systems, 2018, 48:144-156. [16] 林杨, 高思煜, 刘同舜, 等. 基于深度学习的高速铣削刀具磨损状态预测方法[J]. 机械与电子, 2017, 35(7):12-17. LIN Y, GAO S Y, LIU T S, et al. A deep learning-based method for tool wear state prediction in high speed milling[J]. Machinery & Electronics, 2017, 35(7):12-17(in Chinese). [17] FU Y, ZHANG Y, QIAO H Y, et al. Analysis of feature extracting ability for cutting state monitoring using deep belief networks[J]. Procedia CIRP, 2015, 31:29-34. [18] HUANG Z W, ZHU J M, LEI J T, et al. Tool wear predicting based on multisensory raw signals fusion by reshaped time series convolutional neural network in manufacturing[J]. IEEE Access, 2019, 7:178640-178651. [19] CUKA B, KIM D W. Fuzzy logic based tool condition monitoring for end-milling[J]. Robotics and Computer-Integrated Manufacturing, 2017, 47:22-36. [20] SHI X H, WANG R, CHEN Q T, et al. Cutting sound signal processing for tool breakage detection in face milling based on empirical mode decomposition and independent component analysis[J]. Journal of Vibration and Control, 2015, 21(16):3348-3358. [21] HONG Y S, YOON H S, MOON J S, et al. Tool-wear monitoring during micro-end milling using wavelet packet transform and Fisher's linear discriminant[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(7):845-855. [22] KALVODA T, HWANG Y R. A cutter tool monitoring in machining process using Hilbert-Huang transform[J]. International Journal of Machine Tools and Manufacture, 2010, 50(5):495-501. [23] NOURI M, FUSSELL B K, ZINITI B L, et al. Real-time tool wear monitoring in milling using a cutting condition independent method[J]. International Journal of Machine Tools and Manufacture, 2015, 89:1-13. [24] 刘宇, 汪惠芬, 刘庭煜. 一种基于多特征和支持向量机的刀具磨损状态识别技术[J]. 制造业自动化, 2016, 38(5):132-138. LIU Y, WANG H F, LIU T Y. An intelligent tool wear estimation technology based on multi-feature and support vector machine[J]. Manufacturing Automation, 2016, 38(5):132-138(in Chinese). [25] LI Y G, LIU C Q, HUA J Q, et al. A novel method for accurately monitoring and predicting tool wear under varying cutting conditions based on meta-learning[J]. CIRP Annals, 2019, 68(1):487-490. [26] GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[DB/OL]. arXiv preprint:1409.7495, 2014. [27] WANG Z R, DAI Z H, PÓCZOS B, et al. Characterizing and avoiding negative transfer[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019:11285-11294. [28] CHENG C, LI J Y, LIU Y M, et al. Deep convolutional neural network-based in-process tool condition monitoring in abrasive belt grinding[J]. Computers in Industry, 2019, 106:1-13. [29] AGHAZADEH F, TAHAN A, THOMAS M. Tool condition monitoring using spectral subtraction and convolutional neural networks in milling process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98:3217-3227. [30] ZHANG H X, ZHAO J, WANG F Z, et al. Cutting forces and tool failure in high-speed milling of titanium alloy TC21 with coated carbide tools[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture, 2015, 229(1):20-27. [31] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[DB/OL]. arXiv preprint:1406.2661, 2014. [32] 李晶晶, 李迎光, 刘长青, 等. 数控加工过程多源数据实时采集与同步方法[J]. 工具技术, 2019, 53(7):106-110. LI J J, LI Y G, LIU C Q, et al. Real-time acquisition and synchronization method of multi-source data in CNC machining process[J]. Tool Engineering, 2019, 53(7):106-110(in Chinese). [33] International Organization for Standardization. Tool life testing in milling-Part 2:End milling:ISO 8688-2[S]. Geneva:International Organization for Standardization, 1989. |