航空学报 > 2018, Vol. 39 Issue (7): 322084-322084   doi: 10.7527/S1000-6893.2018.22084

基于新型自适应遗传算法的混合可靠性优化模型

安海, 阎朝一, 孙鹏, 尹瑰巧   

  1. 哈尔滨工程大学 航天与建筑工程学院, 哈尔滨 150001
  • 收稿日期:2018-02-06 修回日期:2018-03-23 出版日期:2018-07-15 发布日期:2018-03-23
  • 通讯作者: 安海 E-mail:anhai@hrbeu.edu.cn
  • 基金资助:
    黑龙江省自然科学基金(A201311)

Hybrid reliability optimization model based on new adaptive genetic algorithm

AN Hai, YAN Zhaoyi, SUN Peng, YIN Guiqiao   

  1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
  • Received:2018-02-06 Revised:2018-03-23 Online:2018-07-15 Published:2018-03-23
  • Supported by:
    Natural Science Foundation of Heilongjiang Province (A201311)

摘要: 提出一种新型的自适应遗传算法。结合Logistic函数和余弦函数,对交叉、变异算子曲线进行非线性化处理,实现了交叉算子和变异算子的非线性自适应调整。用新算法求解测试函数,结果表明新算法能够提高收敛速度和精确度,有效地跳出局部收敛,避免早熟现象发生。并基于提出的新型自适应遗传算法,研究了截尾随机-模糊-区间变量的混合可靠性模型的优化问题,建立了以混合可靠性指标作为优化约束条件的混合可靠性优化模型。以某型飞机变速箱同步器系统的优化设计为例,验证了该模型在工程应用中的有效性。

关键词: 遗传算法, 自适应, 交叉算子, 变异算子, 混合可靠性

Abstract: This paper presents a new adaptive genetic algorithm. The crossover and mutation operator curves are processed nonlinearly based on the logistic function and cosine function. The nonlinear adaptive adjustment of the crossover operator and mutation operator is realized. The new algorithm is used to solve the test function. The results show that the new algorithm can improve the convergence speed and accuracy and effectively jump out of local convergence, avoiding the occurrence of precocious phenomenon. Based on the new adaptive genetic algorithm, optimization of the mixed reliability model with censored random-fuzzy-interval variables is studied. A hybrid reliability optimization model is established based on the mixed reliability index. The optimization design of a transmission synchronizer system is conducted to show the applicability of the model proposed.

Key words: genetic algorithm, adaptation, crossover operator, mutation operator, hybrid reliability

中图分类号: