[1] Tam C K W, Webb J C, Dong Z. A study of the short wave components in computational acoustics[J]. Journal of Computational Acoustics, 1993, 1(1): 1-30.
[2] Tam C K W, Webb J C. Dispersion-relation-preserving finite difference schemes for computational acoustics[J]. Journal of Computational Physics, 1993, 107(2): 262-281.
[3] Hu F Q, Hussaini M Y, Manthey J L. Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics[J]. Journal of Computational Physics, 1996, 124(1): 177-191.
[4] Tam C K W, Dong Z. Wall boundary conditions for high-order finite-difference schemes in computational acoustics[J]. Theoretical and Computational Fluid Dynamics, 1994, 6(5-6): 303-322.
[5] Long S L, Nie H, Xue C J, et al. Simulation and experiment on aeroacoustic noise characteristics of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1002-1013. (in Chinese) 龙双丽, 聂宏, 薛彩军, 等. 飞机起落架气动噪声特性仿真与试验[J]. 航空学报, 2012, 33(6): 1002-1013.
[6] Schram C. A boundary element extension of Curle’s analogy for non-compact geometries at low-Mach numbers[J]. Journal of Sound and Vibration, 2009, 322(1): 264-281.
[7] Khalighi Y, Mani A, Ham F, et al. Prediction of soundgenerated by complex flows at low Mach numbers[J]. AIAA Journal, 2010, 48(2): 306-316.
[8] Mao Y J. Development of acoustic analogy for low Mach numbers flow and its applications[D]. Xi’an: School of Energy and Power Engineering, Xi’an Jiaotong University, 2010. (in Chinese) 毛义军. 低马赫数流动中声比拟理论的拓展及其应用研究[D]. 西安: 西安交通大学能源与动力学院, 2010.
[9] Powell A. Aerodynamic noise and the plane boundary[J]. The Journal of the Acoustical Society of America, 2005, 32(8): 982-990.
[10] Shariff K, Wang M. A numerical experiment to determine whether surface shear-stress fluctuations are a true sound source[J]. Physics of Fluids, 2005, 17(10): 107105.
[11] Hu Z, Morfey C L, Sandham N D. Sound radiation from a turbulent boundary layer[J]. Physics of Fluids, 2006, 18(9): 098101.
[12] Nakashima Y, Inoue O. Sound generation by a vortex ring collision with a wall[J]. Physics of Fluids, 2008, 20(12): 126104.
[13] Li X D, Sun X F, Hu Z A, et al. A time domain method for propeller noise prediction including aircraft fuselage effect[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(11): A585-A591. (in Chinese) 李晓东, 孙晓峰, 胡宗安, 等. 考虑飞机舱壁影响的螺旋桨声场时域预测法[J]. 航空学报, 1993, 14(11): A585-A591.
[14] Lighthill M J. On sound generated aerodynamically: I. General theory[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1952, 211(1107): 564-587.
[15] Williams J E F, Hawkings D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321-342.
[16] Wang F, Liu Q H, Cai J S. An unified computational aeroacoustic integral method of noise radiation and scattering with noncompact bodies[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2482-2491. (in Chinese) 王芳, 刘秋洪, 蔡晋生. 非紧致结构气动噪声辐射散射统一积分计算方法[J]. 航空学报, 2013, 34(11): 2482-2491.
[17] Silva L E, Silveira-Neto A, Damasceno J J R. Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method[J]. Journal of Computational Physics, 2003, 189(2): 351-370.
[18] Inoue O, Hatakeyama N. Sound generation by a two-dimensional circular cylinder in a uniform flow[J]. Journal of Fluid Mechanics, 2002, 471(1): 285-314. |