[1] 杨永健, 樊晓光, 王晟达, 等. 基于修正卡尔曼滤波的目标跟踪[J]. 系统工程与电子技术, 2014, 36(5): 846-851. YANG Y J, FAN X G, WANG S D, et al. Target tracking based on amendatory Kalman filter[J]. System Engineering and Electronics, 2014, 36(5): 846-851(in Chinese).
[2] 余戌瞳, 吴玲, 卢发兴. 舰艇摇摆下射界动态变化对武器目标分配的影响[J]. 兵工学报, 2015, 36(9): 1819-1824. YU X T, WU L, LU F X. The influence of dynamically changing firing zone on weapon-target assignment under ship swaying[J]. Acta Armamentarii, 2015, 36(9): 1819-1824 (in Chinese).
[3] 刘玉洲. 舰艇摇摆对雷达侧向精度及工作方式的影响[J]. 舰船电子对抗, 2002, 25(2): 18-21. LIU Y Z. The influence on working mode of radar direction accuracy from ship swaying[J]. Shipboard Electronic Countermeasure, 2002, 25(2): 18-21 (in Chinese).
[4] 窦林涛, 初阳, 程建庆. 舰载雷达系统误差建模仿真分析[J]. 系统仿真学报, 2013, 25(4): 188-192. DOU L T, CHU Y, CHENG J Q. Modeling and simulation analysis of error from shipboard radar[J]. Journal of System Simulation, 2013, 25(4): 188-192 (in Chinese).
[5] 孙世岩, 张国栋. 舰艇摇摆对雷达目标跟踪精度的影响分析[J]. 火力指挥控制, 2011, 36(5): 75-78. SUN S Y, ZHANG G D. Target tracking error analysis caused by ship's pitch and roll[J]. Fire Control & Command Control, 2011, 36(5): 75-78 (in Chinese).
[6] 朱绍强, 李相民, 李丹. 舰炮武器系统海上动态精度实验可行性探讨[J]. 舰船电子工程, 2012, 32(3): 94-96. ZHU S Q, LI X M, LI D. Feasibility discussion of dynamic accuracy test at sea for navy gun weapon system[J]. Ship Electronic Engineering, 2012, 32(3): 94-96 (in Chinese).
[7] 付强, 朱纪洪, 王春平. 蛇形机动目标航迹旋转对射弹脱靶量的影响[J]. 清华大学学报(自然科学版), 2015, 55(8): 884-888. FU Q, ZHU J H, WANG C P. Impact of space rotation on shell distances for serpentine fight path maneuvering[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(8): 884-888 (in Chinese).
[8] 李正周, 刘国金. 基于均值漂移和卡尔曼滤波的目标跟踪方法[J]. 弹箭与制导学报, 2008, 28(1): 71-74. LI Z Z, LIU G J. Target tracking based on mean-shift and Kalman filter[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(1): 71-74 (in Chinese).
[9] 沈悦, 张雷, 傅忠谦, 等. 区间卡尔曼滤波算法在高动态导航的研究[J]. 宇航学报, 2013, 34(3): 355-361. SHEN Y, ZHANG L, FU Z Q, et al. Interval Kalman filtering algorithm for high dynamic navigation and positioning[J]. Journal of Astronautics, 2013, 34(3): 355-361 (in Chinese).
[10] 崔乃刚, 张龙, 王小刚, 等. 自适应高阶容积卡尔曼滤波在目标跟踪中的应用[J]. 航空学报, 2015, 36(12): 3885-3895. CUI N G, ZHANG L, WANG X G, et al. Application of adaptive high-degree cubature Kalman filter in target tracking[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3886-3895 (in Chinese).
[11] 于浛, 魏喜庆, 宋申民, 等. 基于自适应容积卡尔曼滤波的非合作航天器相对运动估计[J]. 航空学报, 2014, 35(8): 2251-2260. YU H, WEI X Q, SONG S M, et al. Relative motion estimation of non-cooperative spacecraft based on adaptive CKF[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2251-2260 (in Chinese).
[12] 李理敏, 龚文斌, 刘会杰, 等. 基于自适应扩展卡尔曼滤波的载波跟踪算法[J]. 航空学报, 2012, 33(7): 1319-1328. LI L M, GONG W B, LIU H J, et al. A carrier tracking algorithm based on adaptive extend Kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1319-1328 (in Chinese).
[13] 李文, 李清东, 李亮, 等. 基于模糊自适应卡尔曼滤波的大气数据辅助姿态算法[J]. 航空学报, 2015, 36(4): 1267-1274. LI W, LI Q D, LI L, et al. Air data assisted attitude algorithm based on fuzzy adaptive Kalman filter[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1267-1274 (in Chinese).
[14] 魏喜庆, 宋申民. 基于改进容积卡尔曼滤波的奇异避免姿态估计[J]. 航空学报, 2013, 34(3): 610-619. WEI X Q, SONG S M. Improved cubature Kalman filter based attitude estimation avoiding singularity[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 610-619 (in Chinese).
[15] 吴楠, 陈磊. 高超超声速滑翔再入飞行器弹道估计的自适应卡尔曼滤波[J]. 航空学报, 2013, 34(8): 1960-1971. WU N, CHEN L. Adaptive Kalman filtering for trajectory estimation of hypersonic glide reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1960-1971 (in Chinese).
[16] LIU Y, DONG K, WANG H P, et al. Adaptive Gaussian sum squared-root cubature Kalman filter with split-merge scheme for state estimation[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1242-1250.
[17] 王琪. 基于惯性测量的全舰统一姿态基准技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2007: 5-15. WANG Q.Research of unified attitude reference technology of the whole ship based on inertial measurement[D].Harbin: Harbin Engineering University,2007:5-15(in Chinese).
[18] 王跃钢, 杨家胜, 杨波. 维度未知条件下捷联惯导系统晃动基座的初始对准[J]. 航空学报, 2012, 33(12): 2322-2329. WANG Y G, YANG J S, YANG B. SINS initial alignment of swaying base under geographic latitude uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2322-2329 (in Chinese).
[19] 刘占超, 房建成. 基于双捷联算法的POS误差在线标定方法[J]. 航空学报, 2012, 33(9): 1679-1687. LIU Z C, FANG J C. Online calibration of POS error based on double strapdown algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1679-1687 (in Chinese).
[20] 谢阳光, 伊国兴, 王常虹, 等. 高斯-厄米特滤波器在捷联惯导系统初始对准中的应用[J]. 航空学报, 2012, 33(3): 554-560. XIE Y G, YI G X, WANG C H, et al. Application of Gauss-Hermit filter in SINS alignment[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 554-560 (in Chinese).
[21] 刘言. 基于光纤陀螺舰载捷联垂直基准关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 23-29. LIU Y. The research on the shipboard strapdowm vertical reference unit based on fiber optic gyroscope[D]. Harbin: Harbin Institute of Technology, 2011: 23-39 (in Chinese). |