航空学报 > 2016, Vol. 37 Issue (7): 2269-2275   doi: 10.7527/S1000-6893.2015.0346

一种稀疏阵列下的二维DOA估计方法

曾文浩, 朱晓华, 李洪涛, 马义耕, 陈诚   

  1. 南京理工大学 电子工程与光电技术学院, 南京 210094
  • 收稿日期:2015-08-10 修回日期:2015-12-18 出版日期:2016-07-15 发布日期:2015-12-28
  • 通讯作者: 李洪涛 男,博士,讲师。主要研究方向:雷达信号处理、阵列信号处理、压缩感知雷达信号采样与处理。Tel:025-84315126,E-mail:liht@njust.edu.cn E-mail:liht@njust.edu.cn
  • 作者简介:曾文浩 男,博士研究生。主要研究方向:雷达信号处理、阵列信号处理、矩阵填充雷达信号采样与处理,E-mail:trikona54@163.com;朱晓华 男,教授,博士生导师。主要研究方向:雷达系统理论与技术、雷达信号理论与应用、高速实时数字信号处理等,E-mail:zxh@njust.edu.cn;马义耕 男,博士研究生。主要研究方向:雷达信号处理、压缩感知雷达信号采样与处理,E-mail:myg_3947@126.com;陈诚 男,博士研究生。主要研究方向:雷达信号处理、压缩感知雷达信号采样与处理,E-mail:278864740@qq.com
  • 基金资助:

    国家自然科学基金(61401204)

A 2D DOA estimation method for sparse array

ZENG Wenhao, ZHU Xiaohua, LI Hongtao, MA Yigeng, CHEN Cheng   

  1. School of Electric Engineering and Optoelectronic Technology, Nanjing University of Science & Technology, Nanjing 210094, China
  • Received:2015-08-10 Revised:2015-12-18 Online:2016-07-15 Published:2015-12-28
  • Supported by:

    National Natural Science Foundation of China (61401204)

摘要:

研究了稀疏阵列下二维波达方向(DOA)的估计问题,提出一种基于不动点迭代的空间谱估计(FPC-MUSIC)算法。首先建立基于矩阵填充的DOA估计信号模型,并验证该信号模型满足零空间性质(NSP),其次通过不动点迭代算法将稀疏阵列信号恢复为完整信号,最后利用恢复信号估计二维DOA。该算法可在稀疏阵列下大幅度降低谱估计平均副瓣,在大幅度降低阵元数的同时具有较高的估计精度。计算机仿真表明:FPC-MUSIC算法可在稀疏阵列下准确估计二维DOA,验证了该算法的有效性和优越性。

关键词: 信号处理, 稀疏阵列, 平面阵列, DOA估计, 矩阵填充

Abstract:

A fixed point continuation multiple signal classification (FPC-MUSIC) algorithm is proposed in this paper for the 2D direction-of-arrival (DOA) estimation for sparse array. The sparse array is built to meet the requests of matrix completion, and then the direction-of-arrival model based on matrix completion is set up which satisfies the null space property (NSP). This algorithm could recover the sparse signals to the complete signals by taking use of fixed point continuation algorithm, and then estimate 2D DOAs. Using this algorithm, the average sidelobe level of the sparse array decreases significantly, the estimation accuracy increases while reducing the number of array element in large scale, and the angle ambiguity problem is avoided. Computer simulation shows that FPC-MUSIC algorithm can estimate the 2D DOA precisely, and the effectiveness and superiority of the algorithm are verified.

Key words: signal processing, sparse array, planar array, DOA estimation, matrix completion

中图分类号: