[1] LEE J, SONG I, KWON H, et al. Low-complexity estimation of 2D DOA for coherently distributed sources[J]. Signal processing, 2003, 83(8):1789-1802.
[2] ZHANG T T, LU Y L, HUI H T. Compensation for the mutual coupling effect in uniform circular arrays for 2D DOA estimations employing the maximum likelihood technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3):1215-1221.
[3] 刘章孟, 周一宇, 吴海斌. 非圆信号的贝叶斯稀疏重构阵列测向方法[J]. 航空学报, 2014, 35(3):821-827. LIU Z M, ZHOU Y Y, WU H B. Direction of arrival estimation method of non-circular signals via sparse bayesian reconstruction[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):821-827(in Chinese).
[4] 罗争, 张旻, 李鹏飞. 基于协方差矩阵高阶幂的二维DOA估计新算法[J]. 航空学报, 2012, 33(4):696-704. LUO Z, ZHANG M, LI P F. A novel 2D DOA estimation algorithm based on high-order power of covariance matrix[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):696-704(in Chinese).
[5] 潘捷, 周建江, 汪飞. 非均匀噪声稀疏均匀圆阵的二维DOA估计[J]. 航空学报, 2011, 32(3):448-456. PAN J, ZHOU J J, WANF F. 2D DOA estimation for sparse uniform circular array in presence of unknown nonuniform noise[J]. Acta Aeronautica et Astro nautica Sinica, 2011, 32(3):448-456(in Chinese).
[6] HEIDENREICH P, ZOUBIR A M, RUBSAMEN M. Joint 2D DOA estimation and phase calibration for uniform rectangular arrays[J]. IEEE Transactions on Signal Processing, 2012, 60(9):4683-4693.
[7] CANDES E J, ELDAR Y C, STROHMER T, et al. Phase retrieval via matrix completion[J]. SIAM Journal on Imaging Sciences, 2013, 6(1):199-225.
[8] RECHT B, XU W, HASSIBI B. Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization[C]//47th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2008:3065-3070.
[9] CANDÈS E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational mathematics, 2009, 9(6):717-772.
[10] ELDAR Y C, GITTA K. Compressed sensing:Theory and applications[M]. Cambridge:Cambridge University Press, 2012:1-10.
[11] DUARTE M F, BARANIUK R G. Spectral compressive sensing[J]. Applied and Computational Harmonic Analysis, 2013, 35(1):111-129.
[12] CHEN C, HE B, YUAN X. Matrix completion via an alternating direction method[J]. IMA Journal of Numerical Analysis, 2012, 32(1):227-245.
[13] SCHENCK C, SINAPOV J, STOYTCHEV A. Which object comes next? Grounded order completion by a humanoid robot[J]. Cybernetics & Information Technologies, 2013, 12(3):5-16.
[14] MA S, GOLDFARB D, CHEN L. Fixed point and Bregman iterative methods for matrix rank minimization[J]. Mathematical Programming, 2011, 128(1-2):321-353.
[15] HU Y, ZHANG D, YE J, et al. Fast and accurate matrix completion via truncated nuclear norm regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9):2117-2130.
[16] RECHT B. A simpler approach to matrix completion[J]. Journal of Machine Learning Research, 2011, 12(4):3413-3430.
[17] KALOGERIAS D S, PETROPULU A P. Matrix completion in colocated MIMO radar:Recoverability, bounds & theoretical guarantees[J]. IEEE Transactions on Signal Processing, 2014, 62(2):309-321.
[18] SUN S, PETROPULU A P, BAJWA W U. Target estimation in colocated MIMO radar via matrix completion[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ:IEEE Press, 2013:4144-4148.
[19] SUN S, BAJWA W U, PETROPULU A P. MIMO-MC radar:A MIMO radar approach based on matrix completion[J]. Eprint Arxiv, 2014, 51(3):1839-1852.
[20] LI B, PETROPULU A. Spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ:IEEE Press, 2015:2444-2448. |