[1] HAWKINS D. Identification of outliers[M]. London:Chapman and Hall, 1980:1-25.
[2] DANESHPAZHOUH A, SAMI A. Entropy-based outlier detection using semi-supervised approach with few positive examples[J]. Pattern Recognition Letters, 2014, 49:77-84.
[3] ALBANESE A, PAL S K, PETROSINO A. Rough sets, kernel set, and spatiotemporal outlier detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1):194-207.
[4] WESTERWEEL J, SCARANO F. Universal outlier detection for PIV data[J]. Experiments in Fluids, 2005, 39(6):1096-1100.
[5] DUNCAN J, DABIRI D, HOVE J, et al. Universal outlier detection for particle image velocimetry (PIV) and particle tracking velocimetry (PTV) data[J]. Measurement Science and Technology, 2010, 21(5):57002-57006.
[6] LIU J, WAN J, ZHENG H, et al. A method of specific emitter verification based on CSDA and SVDD[C]//Proceedings of the IEEE 2nd International Conference on Computer Science and Network Technology. Piscataway, NJ:IEEE Press, 2012:562-565.
[7] RU X H, LIU Z, JIANG W L. Normalized residual-based outlier detection[C]//Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Piscataway, NJ:IEEE Press, 2014:190-193.
[8] NATTORN B, ARTHORN L, KRUNG S. Outlier detection score based on ordered distance difference[C]//Proceedings of the IEEE International Computer Science and Engineering Conference (ICSEC). Piscataway, NJ:IEEE Press, 2013:157-162.
[9] ZHAO M, SALIGRAMA V. Anomaly detection with score functions based on nearest neighbor graphs[J]. Advances in Neural Information Processing Systems, 2009, 22(1):2250-2258.
[10] QIAN J, SALIGRAMA V. New statistic in p-value estimation for anomaly detection[C]//Proceedings of the IEEE Statistical Signal Processing Workshop (SSP). Piscataway, NJ:IEEE Press, 2012:393-396.
[11] CHEN Y T, QIAN J, SALIGRAMA V. A new one-class SVM for anomaly detection[C]//Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Piscataway, NJ:IEEE Press, 2013:3567-3571.
[12] SCHÖLKOPF B, PLATT J C, SHAWE-TAYLOR J C, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7):1443-1471.
[13] FURLANI M, TUIA D, MUNOZ-MARI J, et al. Discovering single classes in remote sensing images with active learning[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway, NJ:IEEE Press, 2012:7341-7344.
[14] JUMUTC V, SUYKENS J. Multi-class supervised novelty detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(12):2510-2523.
[15] XUE Z, SHANG Y, FENG A. Semi-supervised outlier detection based on fuzzy rough C-means clustering[J]. Mathematics and Computers in Simulation, 2010, 80(9):1911-1921.
[16] HUNG J W, FAN H T. Subband feature statistics normalization techniques based on a discrete wavelet transform for robust speech recognition[J]. IEEE Signal Processing Letters, 2009, 16(9):806-809.
[17] SQUARTINI S, PRINCIPI E, ROTILI R, et al. Environmental robust speech and speaker recognition through multi-channel histogram equalization[J]. Neurocomputing, 2012, 78(1):111-120.
[18] DAI P, SOON I Y. An improved model of masking effects for robust speech recognition system[J]. Speech Communication, 2013, 55(3):387-396.
[19] VALENZUELA O, PASADAS M. Fuzzy data approximation using smoothing cubic splines:Similarity and error analysis[J]. Applied Mathematical Modelling, 2011, 35(5):2122-2144.
[20] FREI M G, OSORIO I. Intrinsic time-scale decomposition:Time-frequency-energy analysis and real-time filtering of non-stationary signals[J]. Royal Society of London Proceedings, 2007, 463(2078):321-342.
[21] ZENG J X, WANG G F, ZHANG F Q, et al. The de-noising algorithm based on intrinsic time-scale decomposition[J]. Advanced Materials Research, 2011, 422:347-352. |