[1] BRYANT M L, WORRELL S W, DIXON A C. MSE template size analysis for MSTAR data[J]. Algorithms for Synthetic Aperture Radar Imagery V,1998,3370:396-405.
[2] KAPLAN L M. Analysis of multiplicative speckle models for template-based SAR ATR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4):1424-1432.
[3] ERIC R K, LEE S W. Signature prediction for model-based automatic target recognition[J]. Algorithms for Synthetic Aperture Radar Imagery Ⅲ, 1996, 2757:306-317.
[4] WISSINGER J, WASHBURN R, MORGAN D, et al. Search algorithms for model-based SAR ATR[J]. Algorithms for Synthetic Aperture Radar Imagery Ⅲ, 1996, 2757:279-293.
[5] WANG J J H. Generalized moment method in electromagnetics:Formulation and computer solution of integral equation[M]. Hoboken,New Jersey:John Wiley & Sons, Inc., 1990:512-513.
[6] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安:西安电子科技大学出版社, 2002:208-213. GE D B, YAN Y B. Finite-difference time-domain method for electromagnetic wave[M]. Xi'an:Publishing House of Xidian University, 2002:208-213.
[7] SONG J M, CHEW W C. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering[J]. Microwave and Optical Technology Letter, 1995, 10:14-19.
[8] KNOT E F. A progression of high-frequency RCS prediction techniques[J]. Proceeding of the IEEE, 1985, 73(2):252-264.
[9] YOUSSEF N N. Radar cross section of complex targets[J]. Proceeding of the IEEE, 1989, 77(5):722-734.
[10] LEES P A, DACIES M R. Computer prediction of RCS for military targets[J]. Radar & Signal Processing IEE Proceedings F, 1990, 137(4):229-236.
[11] MICHAELI A. Equivalent edge currents for arbitrary aspects of observation[J]. IEEE Transactions on Antennas and Propagation, 1984, 32(3):252-258.
[12] KLEMENT D, PREISSNER J, STEIN V. Special problems in applying the physical optics method for backscatter computations of complicated objects[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(2):228-237.
[13] LEE S W, LING H, CHOU R. Shooting and bouncing rays:Calculating the RCS of an arbitrarily shaped cavity[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(2):194-205.
[14] DE ROO R D, ULABY F T. Bistatic specular scattering from rough dielectric surfaces[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(2):220-231.
[15] GREFFECT J J. Theoretical model of the shift of the Brewster angle on a rough surface[J]. Optics Letters, 1992, 17(4):238-240.
[16] DE ROO R D, ULABY F T. A modified physical optics model of the rough surface reflection coefficient[C]//Antennas and Propagation Society International Symposium, 1996:1772-1775.
[17] DIDASCALOU D, MAURER J, WIESBECK W. A novel stochastic rough-surface scattering representation for ray-optical wave propagation modelling[C]//IEEE VTS 54th Vehicular Technology Conference. Piscataway, NJ:IEEE Press, 2001:1785-1788.
[18] MAMETSA H J, BERGES A, LATGER J. Using roughness textures in target modelling-impact on ISAR images calculations of the ZSU 23-4[C]//MMW Advanced Target Recognition and Identification Experiment, 2005:1-8.
[19] 黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京:电子工业出版社, 2004:22-46. HUANG P K, YIN H C, XU X J. Radar target characteristic[M]. Beijing:Publishing House of Electronics Industry, 2004:22-46.
[20] 董纯柱, 殷红成, 王超. 基于射线管分裂方法的SAR场景快速消隐技术[J]. 雷达学报, 2012(4):436-440. DONG C Z, YIN H C, WANG C. A fast hidden surface removal approach for complex SAR scene based on adaptive ray-tube splitting method[J]. Journal of Radars, 2012(4):436-440(in Chinese).
[21] 殷红成, 朱国庆, 董纯柱, 等. 基于自适应射线管分裂的多次反射计算方法[J]. 系统工程与电子技术, 2013, 35(4):700-706. YIN H C, ZHU G Q, DONG C Z, et al. Efficient multi-reflection computational method based on adaptive ray tube splitting[J]. Systems Engineering and Electronics, 2013, 35(4):700-706(in Chinese). |