[1] Escalé P, Rubatat, Billon L, et al. Recent advances in honeycomb-structured porous polymer films prepared via breath figures[J]. European Polymer Journal, 2012, 48(6):1001-1025.
[2] Meran A P, Toprak T, Mǔan A. Numerical and experimental study of crashworthiness parameters of honeycomb structures[J]. Thin-Walled Structures, 2014, 78:87-94.
[3] Gibson L J, Ashby M F. Cellular solids:structures and properties[M]. 2nd ed. Cambridge:Cambridge University Press, 1997:93-160.
[4] Olympio K R, Gandhi F. Zero-V cellular honeycomb flexible skins for one-dimensional wing morphing[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA Inc.,2007:1735.1-28.
[5] Wereley N M, Gandhi F. Flexible skins for morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17):1697-1698.
[6] Olympio K R, Gandhi F, Asheghian L, et al. Design of a flexible skin for a shear morphing wing[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17):1755-1770.
[7] Murugan S, Friswell M I. Morphing wing flexible skins with curvilinear fiber composites[J]. Composite Structures, 2013, 99:69-75.
[8] Leng J S, Sun J, Liu Y J. Application status and future prospect of smart material and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):29-45(in Chinese).冷劲松,孙健,刘彦菊.智能材料和结构在变体飞行器上的应用现状与前景展望[J].航空学报, 2014, 35(1):29-45.
[9] Dale A S, Cooper J E. Topology optimization & experi mental validation of 0-υ honeycomb for adaptive morphing wing[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. Reston:AIAA Inc., 2014:0763.1-0763. 10.
[10] Lira C, Scarpa F, Tai Y H, et al. Transverse shear modulus of SILICOMB cellular structures[J]. Composites Science and Technology, 2011, 71(9):1236-1241.
[11] Neville R M, Monti A, Hazra K, et al. Transverse stiffness and strength of Kirigami zero-υ PEEK honeycombs[J]. Composite Structures, 2014, 114:30-40.
[12] Liu W D, Zhu H, Zhou S Q, et al. In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing[J]. Chinese Journal of Aeronautics, 2013, 26(4):935-942.
[13] Olympio K R, Gandhi F. Zero Poisson's ratio cellular honeycombs for flex skins undergoing one-dimensional morphing[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17):1737-1753.
[14] Zhang P, Zhou L, Qiu T. A new flexible honeycomb structure and its application in structure design of morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):156-163(in Chinese).张平,周丽,邱涛.一种新的柔性蜂窝结构及其在变体飞机中的应用[J].航空学报, 2011, 32(1):156-163.
[15] Cheng W J, Zhou L, Zhang P, et al. Design and analysis of a zero Poisson's ratio mixed cruciform honeycomb and its application in flexible skin[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):680-690(in Chinese).程文杰,周丽,张平,等.零泊松比十字形混合蜂窝设计分析及其在柔性蒙皮中的应用[J].航空学报, 2015, 36(2):680-690.
[16] Bubert E A, Woods B K S, Lee K, et al. Design and fabrication of a passive 1D morphing aircraft skin[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17):1699-1717.
[17] Heo H, Ju J, Kim D M. Compliant cellular structures:Application to a passive morphing airfoil[J]. Composite Structures, 2013, 106:560-569.
[18] Lu C, Li Y X, Dong E B, et al. Equivalent elastic modulus of zero Poisson's ratio honeycomb core[J].Journal of Material Engineering, 2013(12):80-84(in Chinese).鲁超,李永新,董二宝,等.零泊松比蜂窝芯等效弹性模量研究[J].材料工程, 2013(12):80-84.
[19] Olympio K R, Gandhi F. Flexible skins for morphing aircraft using cellular honeycomb cores[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17):1719-1735.
[20] Ju J, Summers J D, Ziegert J, et al. Design of honeycombs for modulus and yield strain in shear[J]. Journal of Engineering Materials and Technology, 2012, 134(1):011002/1-011002/15.
[21] Ju J, Summers J D. Compliant hexagonal periodic lattice structures having both high shear strength[J]. Materials and Design, 2011, 32(2):512-524. |