[1] Weisshaar T A. Morphing aircraft systems: Historical perspectives and future challenges[J]. Journal of Aircraft, 2013, 50(2): 337-353.[2] Xia Y, Ajaj R M, Friswell M I. Design and optimization of composite corrugated skin for a span morphing wing[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. Maryland: National Harbor, 2014.[3] Prisacariu V, Boscoianu M, Circiu I. Morphing wing concept for small UAV[J]. Applied Mechanics and Materials, 2013, 332: 44-49.[4] Barbarino S, Bilgen O, Ajaj R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877.[5] Sofla A Y N, Meguid S A, Tan K T, et al. Shape morphing of aircraft wing: status and challenges[J]. Materials and Design, 2010, 31(3): 1284-1292.[6] Thill C, Etches J, Bond I, et al. Morphing skins[J]. The Aeronautical Journal, 2008, 112(1129): 117-139.[7] Yin W L. Analysis of stiffness requirements for the flexible skin of wing variable camber trailing edge[J]. SCIENTIA CHINA Technologica, 2010, 40(9):1090-1094 (in Chinese). 尹维龙. 可变后缘弯度机翼柔性蒙皮的刚度需求分析[J]. 中国科学: 技术科学, 2010, 40(9): 1090-1094.[8] Shi L. Investigation on fabrication and property of magnesium and magnesium-aluminum honeycomb panels[D]. Dalian: Dalian Jiaotong University, 2010 (in Chinese). 石琳. 镁合金蜂窝板和镁铝蜂窝板的制备与性能研究[D]. 大连: 大连交通大学, 2010.[9] Olympio K R, Gandhi F. Flexible skins for morphing aircraft using cellular honeycomb cores[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17): 1719-1735.[10] Peng H F. The design and optimization of superelastic flexible honeycomb structure[D]. Hefei: University of Science and Technology of China, 2011 (in Chinese). 彭海峰. 柔顺蜂窝蒙皮结构设计及研究[D]. 合肥: 中国科学技术大学, 2011.[11] Zhang P, Zhou L, Qiu T. Mechanical property analysis and structural design of flexible skin based on deformable honeycomb[J]. Chinese Journal of Solid Mechanics, 2013, 34(5): 433-440 (in Chinese). 张平, 周丽, 邱涛. 基于可变形蜂窝的柔性蒙皮力学性能分析与结构设计[J]. 固体力学学报, 2013, 34(5): 433-440.[12] Zhang P, Zhou L, Qiu T. A new flexible honeycomb structure and its application in structure design of morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 156-163 (in Chinese). 张平, 周丽, 邱涛. 一种新的柔性蜂窝结构及其在变体飞机中的应用[J]. 航空学报, 2011, 32(1): 156-163.[13] Olympio K R, Gandhi F. Zero Poisson's ratio cellular honeycombs for flex skins undergoing one-dimensional morphing[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17): 1737-1753.[14] Liu W D, Zhu H, Zhou S Q, et al. In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing[J]. Chinese Journal of Aeronautics, 2013, 26(4): 935-942.[15] Zhao X W. The analysis of mechanical properties of morphing honeycomb structures[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). 赵显伟. 可变形蜂窝结构的力学性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2013.[16] Edward A, Wood B K S, Lee K, et al. Design and fabrication of a passive 1D morphing aircraft skin[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17): 1699-1717.[17] Zhang Y X, Qiu T, Wang J Z. A flexible skin design technology and the application on variable camber trailing edge[J]. Aeronautical Science & Technology, 2012(5): 26-28 (in Chinese). 张音旋, 邱涛, 王健志. 一种柔性蒙皮设计技术及其在后缘变弯度机翼结构中的应用[J]. 航空科学技术, 2012(5): 26-28. |