[1] Si H Q, Wang T G. Solver of three-dimensional Navier-Stokes equations based on the fully implicit unfactored algorithm[J]. Chinese Journal of Computational Mechanics, 2009, 26(2): 252-257 (in Chinese). 司海清, 王同光. 基于全隐式无分裂算法求解三维N-S方程[J]. 计算力学学报, 2009, 26(2): 252-257.
[2] Pullian T H, Chaussee D S. A diagonal form of an implicit approximate factorization algorithm[J]. Journal of Computational Physics, 1981, 39(2): 347-363.
[3] Yoon S, Jameson A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stoker equations[J]. AIAA Journal, 1988, 26(9): 1025-1026.
[4] MacCormack R W. A numerical method for solving the equations of compressible viscous flow, AIAA-1981-0110[R]. Reston: AIAA, 1981.
[5] Jameson A. Time dependent calculation using multigrid with applications to unsteady flows past airfoils and wings, AIAA-1991-1596[R]. Reston: AIAA, 1991.
[6] Chen J L, Han Y R. Modern applied mathematics handbook—modern applied analysis volume[M]. Beijing: Tsinghua University Press, 1998: 182-185 (in Chinese). 陈景良, 韩云瑞. 现代应用数学手册——现代应用分析卷[M]. 北京: 清华大学出版社, 1998: 182-185.
[7] Harten A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3): 357-393.
[8] van Leer B. Towards to the ultimate conservation difference schemes. V. a second-order sequel to Godunov method[J]. Journal of Computational Physics, 1979, 32(1): 101-136.
[9] Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212.
[10] Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[11] Dong H T, Zhang L D, Li C X. High order discontinuities decomposition entropy condition schemes for Euler equations[J]. Computational Fluid Dynamics Journal, 2002, 10(4): 448-457.
[12] Zhao H Y, Le J L. Application analysis on dual-time stepping[J]. Chinese Journal of Computational Physics, 2008, 25(3): 253-258 (in Chinese). 赵慧勇, 乐嘉陵. 双时间步方法的应用分析[J]. 计算物理, 2008, 25(3): 253-258.
[13] Zhang D L. A course in computational fluid dynamics[M]. Beijing: Higher Education Press, 2010: 143-144 (in Chinese). 张德良. 计算流体力学教程[M]. 北京: 高等教育出版社, 2010: 143-144.
[14] Zhang H, Tan H J, Sun S. Characteristics of shock-train in a straight isolator with interference of incident shock waves and corner expansion waves[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1733-1739 (in Chinese). 张航, 谭慧俊, 孙姝. 进口斜激波、膨胀波干扰下等直隔离段内的激波串特性[J]. 航空学报, 2010, 31(9): 1733-1739.
[15] Su M D, Kang Q J. Large eddy simulation of the turbulent flow around a circular cylinder at subcritical Reynolds numbers[J]. Acta Mechanica Sinica, 1999, 31(1): 100-105 (in Chinese). 苏铭德, 康钦军. 亚临界雷诺数下圆柱绕流的大涡模拟[J]. 力学学报, 1999, 31(1): 100-105.
[16] Zhang Q F, He H T, Lu Z Y. Numerical study on two-dimensional laminar flow and control over a circular cylinder[J]. Science Technology and Engineering, 2009, 9(5): 1187-1193 (in Chinese). 张群峰, 何鸿涛, 吕志咏. 二维圆柱层流绕流及其控制数值模拟[J]. 科学技术与工程, 2009, 9(5): 1187-1193.
[17] Radespiel R. A cell-vertex multigrid method for the Navier-Stokes equations, NASA-TM-101557[R]. Washington, D.C.: NASA, 1988.
[18] Cannizzaro F E. Investigation of upwind, multigrid, multi-block numerical schemes for three demensional flows, Volume I: Runge-Kutta methods for a thin layer Navier-Stokes solver, NASA-R-191648[R]. Washington, D.C.: NASA, 1992.
[19] MacCormack R W. Current status of numerical solutions of the Navier-Stokes equations, AIAA-1985-0032[R]. Reston: AIAA, 1985.
[20] Zhang H X, Guo C, Zong W G. Problems about grid and high order schemes[J]. Acta Mechanica Sinica, 1999, 31(4): 398-405 (in Chinese). 张涵信, 呙超, 宗文刚. 网格与高精度差分计算问题[J]. 力学学报, 1999, 31(4): 398-405. |