[1] |
NOACK R W, BOGER D A, KUNZ R F, et al. Suggar++:An improved general overset grid assembly capability[C]//19th AIAA Computational Fluid Dynamics. Reston:AIAA, 2009.
|
[2] |
PESKIN C S. Numerical analysis of blood flow in the heart[J]. Journal of Computational Physics, 1977, 25(3):220-252.
|
[3] |
MITTAL R, IACCARINO G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37:239-261.
|
[4] |
SOTIROPOULO F, YANG X L. Immersed boundary methods for simulating fluid-structure interaction[J]. Progress in Aerospace Sciences, 2014, 65:1-21.
|
[5] |
KIM W, CHOI H. Immersed boundary methods for fluid-structure interaction:A review[J]. International Journal of Heat and Fluid Flow, 2019, 75(1):301-309.
|
[6] |
GOLDSTEIN D, HANDER R, SIROVICH L. Modeling a no-slip flow boundary with an external force field[J]. Journal of Computational Physics, 1993, 105(2):354-366.
|
[7] |
SAIKI E M, BIRINGEN S. Numerical simulation of a cylinder in uniform flow:Application of a virtual boundary method[J]. Journal of Computational Physics, 1996, 123(2):450-465.
|
[8] |
李秋实, 徐飞, 李志平. 一种包含运动边界的高精度流场数值计算方法[J]. 航空学报, 2014, 35(7):1815-1824. LI Q S, XU F, LI Z P. A numerical method for simulating flow involving moving boundaries with high order accuracy[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1815-1824(in Chinese).
|
[9] |
WANG Z, DU L, ZHAO J S, et al. Structural response and energy extraction of a fully passive flapping foil[J]. Journal of Fluids and Structures, 2017, 72:96-113.
|
[10] |
LI X J, ZHAO R G, ZHONG C W. Novel immersed boundary-lattice Boltzmann method based on feedback law[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2012, 29(2):179-186.
|
[11] |
HUANG W X, SHIN S J, SUNG H J. Simulation of flexible filaments in a uniform flow by the immersed boundary method[J]. Journal of Computational Physics, 2007, 226(2):2206-2228.
|
[12] |
SHOELE K, ZHU Q. Leading edge strengthening and the propulsion performance of flexible ray fins[J]. Journal of Fluid Mechanics, 2012, 693:402-432.
|
[13] |
GONG C L, HAN J K, YUAN Z J, et al. Numerical investigation of the effects of different parameters on the thrust performance of three dimensional flapping wings[J]. Aerospace Science and Technology, 2018,84:431-445.
|
[14] |
XU S, WANG Z J. An immersed interface method for simulating the interaction of a fluid with moving boundaries[J]. Journal of Computational Physics, 2006, 216(2):454-493.
|
[15] |
HAN J K, ZHANG Y, CHEN G. Effects of individual horizontal distance on the three-dimensional bionic flapping multi-wings in different schooling configurations[J]. Physics of Fluids, 2019, 31(4):1903-1919.
|
[16] |
胡国暾, 杜林, 孙晓峰. 基于浸入式边界法的叶栅颤振数值模拟[J]. 航空学报, 2015, 36(7):2269-2278. HU G D, DU L, SUN X F. Numerical simulation of an oscillating cascade based on immersed boundary method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2269-2278(in Chinese).
|
[17] |
ZHONG G H, DU L, SUN X F. Numerical investigation of an oscillating airfoil using immersed boundary method[J]. Journal of Thermal Science, 2011, 20(5):413-422.
|
[18] |
DU L, SUN X F, VIGOR Y. Generation of vortex lift through reduction of rotor/stator gap in turbo machinery[J]. Journal of Propulsion and Power, 2015, 32(2):1-14.
|
[19] |
WANG L, CURRAO G, HAN F, et al. An immersed boundary method for fluid-structure interaction with compressible multiphase flows[J]. Journal of Computational Physics, 2017, 346:131-151.
|
[20] |
GUO X X, YAO J K, ZHONG C W, et al. A hybrid adaptive-gridding immersed-boundary lattice Boltzmann method for viscous flow simulations[J]. Applied Mathematics and Computation, 2015, 267(9):529-553.
|
[21] |
YANG X L, ZHANG X, LI Z L, et al. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations[J]. Journal of Computational Physics, 2009, 228(20):7821-7836.
|
[22] |
LEE C. Stability characteristics of the virtual boundary method in three-dimensional applications[J]. Journal of Computational Physics, 2003, 184(2):559-591.
|
[23] |
SHIN S J, HUANG W X, SUNG H J. Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method[J]. International Journal for Numerical Methods in Fluids, 2008, 58(3):263-286.
|
[24] |
ANSYS FLUENT. Release 14.0, theory guide[M]. Ansys Inc, 2011.
|
[25] |
袁瑞峰. 气体动理论格式的浸入边界法研究[D].西安:西北工业大学, 2015. YUAN R F. The immersed-boundary method for gas-kinetic scheme[D]. Xi'an:Northwestern Polytechnical University, 2015(in Chinese).
|
[26] |
HAMA R, MELDI M, FAVIER J, et al. A pressure-corrected immersed boundary method for the numerical simulation of compressible flows[J]. Journal of Computational Physics, 2018, 374:361-383.
|
[27] |
WANG S Z, ZHANG X. An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows[J]. Journal of Computational Physics, 2011, 230(9):3479-3499.
|
[28] |
WU J, SHU C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications[J].Journal of Computational Physics, 2010, 228(6):1963-1979.
|
[29] |
LEE D S, HA M Y, KIM S J, et al. Application of immersed boundary method for flow over stationary and oscillating cylinders[J]. Journal of Mechanical Science and Technology, 2006, 20(6):849-863.
|
[30] |
DÜTSCH H, DURST F, BECKER S, et al. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers[J]. Journal of Fluid Mechanics, 1998, 360:249-271.
|
[31] |
WANG Z J. Computation of insect hovering[J]. Mathematical Methods in the Applied Sciences, 2001, 24:1515-1521.
|
[32] |
JOHNSON T A, PATEL V C. Flow past a sphere up to a Reynolds number of 300[J]. Journal of Fluid Mechanics, 1999, 378:19-70.
|
[33] |
WANG Y, SHU C, YANG L M, et al. An immersed boundary-lattice Boltzmann flux solver in a moving frame to study three-dimensional freely falling rigid bodies[J]. Journal of Fluids and Structures, 2017, 68:444-465.
|
[34] |
WANG Y, SHU C, TEO C J, et al. An efficient immersed boundary-lattice Boltzmann flux solver for simulation of 3D incompressible flows with complex geometry[J]. Computers & Fluids, 2016, 124:54-66.
|