[1] General Editorial Council of Aeroengine Design Manual. Aeroengine design manual. Rotor dynamics and whole body vibration(19)[M]. Beijing: Aviation Industry Press, 2000. (in Chinese) 航空发动机设计手册总编委会. 航空发动机设计手册. 第19册, 转子动力学及整机振动[M]. 北京: 航空工业出版社, 2000.[2] Volponi A. Data fusion for enhanced aircraft engine prognostics and health management, NASA CR-214055[R]. East Hartford: NASA, 2005.[3] Yang J P, Huang H Z, Miao Q. Diagnosis method of aeroengine early fault based on the Dempster-Shafer evidence theory[J]. Journal of Aerospace Power, 2008, 23(12): 2327-2331. (in Chinese) 杨建平, 黄洪钟, 苗强. 基于证据理论的航空发动机早期故障诊断方法[J]. 航空动力学报, 2008, 23(12): 2327-2331.[4] Lu F, Huang J Q, Chen Y. Research on performance fault fusion diagnosis of aero-engine component[J]. Journal of Aerospace Power, 2009, 24(7): 1649-1653. (in Chinese) 鲁峰, 黄金泉, 陈煜. 航空发动机部件性能故障融合诊断方法研究[J]. 航空动力学报, 2009, 24(7): 1649-1653.[5] Chen L B, Song L Q, Chen G, et al. Study on fusion diagnosis techniques of wear faults in synthesized monitoring of aero-engine[J]. Journal of Aerospace Power, 2009, 24(1): 169-175. (in Chinese) 陈立波, 宋兰琪, 陈果, 等. 航空发动机滑油综合监控中的磨损故障融合诊断研究[J]. 航空动力学报, 2009, 24(1): 169-175.[6] Yager R. On the Dempster-Shafer framework and new combination rules[J]. Information Sciences, 1987, 1(2): 93-138.[7] Chen T, Sun J G, Hao Y. Neural network and Dempster-Shafter theory based fault diagnosis for aeroengine gas path[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6): 1014-1017. (in Chinese) 陈恬, 孙健国, 郝英. 基于神经网络和证据融合理论的航空发动机气路故障诊[J]. 航空学报, 2006, 27(6): 1014-1017.[8] Deng Y, Shi W K, Zhu Z F. Efficient combination approach of conflict evidence[J]. Journal Infrared Millimeterand Waves, 2005, 23(1): 27-32. (in Chinese) 邓勇, 施文康, 朱振福. 一种有效处理冲突证据的组合方法[J]. 红外与毫米波学报, 2005, 23(1): 27-32.[9] Hou J, Miao Z, Pan Q. A adaptive integration algorithms with DST and DSmT[J]. Microelectronics & Computer, 2006, 23(10): 150-152. (in Chinese) 侯俊, 苗壮, 潘泉. DST与DSmT自适应融合算法[J]. 微电子学与计算机, 2006, 23(10): 150-152.[10] Sun Y, Bentabet L. A particle filtering and DSmT based approach for conflict resolving in case of target tracking with multiple cues[J]. Journal of Mathematical Imaging and Vision, 2010, 36(2): 159-167.[11] Smarandache F, Dezert J. Proportional conflict redistribution rules for information fusion[M][C]//Smarandache F, Dezert J. Applications and advances of DSmT for information fusion. Rehoboth: American Research Press, 2006:3-68.[12] Zhai X S, Hu J H, Xie S S, et al. Diagnosis of aero-engine with early vibration fault symptom using DSmT[J]. Journal of Aerospace Power, 2012, 27(2): 301-306. (in Chinese) 翟旭升, 胡金海, 谢寿生, 等. 基于DSmT的航空发动机早期振动故障融合诊断方法[J].航空动力学报, 2012, 27(2): 301-306.[13] Hu J H, Xie S S, Luo G Q, et al. Fusion diagnosis of aero-engine wearing condition based on Dempster-Shafer proof theory[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(3): 343-346. (in Chinese) 胡金海, 谢寿生, 骆广琦, 等. 基于Dempster-Shafer证据理论的航空发动机磨损状况融合诊断[J]. 机械科学与技术, 2008, 27(3): 343-346.[14] Ding Y Y, Li H R. A simple and effective improved D-S method for conflict evidence[J]. Command Control & Simulation, 2011, 33(2): 22-25. (in Chinese) 丁迎迎, 李洪瑞. 一种简单有效的处理冲突证据的D-S改进方法[J]. 指挥控制与仿真, 2011, 33(2): 22-25.[15] Liang W, Wei H F, Zhou F. Fusion method of conflict evidence in D-S theory[J]. Computer Engineering and Applications, 2011, 47(6): 144-147.(in Chinese) 梁威, 魏宏飞, 周锋. D-S证据理论中一种冲突证据的融合方法[J].计算机工程与应用, 2011, 47(6): 144-147.[16] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical Physical and Engineering Science, 1998, 454(1971): 903-995.[17] Yang J M, Tian Y. Roller bearing fault diagnosis by using empirical mode decomposition and sphere-structured support vector machine[J]. Journal of Vibration, Measurement & Diagnosis, 2009, 29(2): 155-158. (in Chinese) 杨洁明, 田英. 基于EMD和球结构SVM的滚动轴承故障诊断[J]. 振动、测试与诊断, 2009, 29(2): 155-158. |