Please wait a minute...
航空学报 > 2015, Vol. 36 Issue (2): 555-563   doi: 10.7527/S1000-6893.2014.0257
基于半随机滤波-期望最大化算法的剩余寿命在线预测
冯磊1, 王宏力1, 司小胜1, 杨晓君1, 王标标2
1. 第二炮兵工程大学, 西安 710025;
2. 96275部队, 洛阳 471003
Real-time residual life prediction based on semi-stochastic filter and expectation maximization algorithm
FENG Lei1, WANG Hongli1, SI Xiaosheng1, YANG Xiaojun1, WANG Biaobiao2
1. The Second Artillery Engineering College, Xi'an 710025, China;
2. Unit 96275, Luoyang 471003, China
下载:  PDF (2024KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

剩余寿命(RL)预测是设备预测维护的关键环节。准确在线预测能够为维护策略的实时安排提供更加精确的技术支持,有效避免失效的发生。工程实际中,反映设备退化过程的性能指标往往不能直接监测,为解决隐含退化过程的剩余寿命在线预测问题,提出一种基于半随机滤波-期望最大化(EM)算法的预测方法。首先以剩余寿命为隐含状态,构建状态空间模型描述直接监测数据与设备剩余寿命间的随机关系。为实现单个设备剩余寿命的在线预测,依据到当前时刻为止的监测数据,采用扩展卡尔曼滤波(EKF)与期望最大化算法相互协作的方法实时估计与更新模型未知参数和剩余寿命分布。最后,将该方法用于惯性测量组合(IMU)剩余寿命在线预测问题,实验结果表明该方法能够提高预测的准确性并减少预测的不确定性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯磊
王宏力
司小胜
杨晓君
王标标
关键词:  剩余寿命  预测  半随机滤波  期望最大化  扩展卡尔曼滤波    
Abstract: 

The prediction of residual life (RL) is the key of the predictive maintenance for engineering equipment. Accurate and real-time prediction can provide more effective decision support to the subsequent maintenance schedule and avoid the failure effectively. In engineering practice, the performance index reflecting the degradation process of the equipment is generally not observed directly. To tackle the residual life problem under hidden degradation, a prediction method based on semi-stochastic and expectation maximization (EM) algorithm is proposed in this paper. First, the residual life is taken as the hidden state and the prediction model is constructed by building the stochastic relationship between the residual life and monitoring data. Secondly, based on the monitoring data up to the current time, a collaborative method by the extended Kalman filter (EKF) and expectation maximization algorithm is presented to achieve a real-time estimation and updating of the residual life distribution and unknown model parameters. Finally, the proposed method is validated by the application to the inertial measurement unit (IMU) and the results indicate that the method can improve the accuracy and reduce the uncertainty of the estimated residual life.

Key words:  residual life    prediction    semi-stochastic filter    expectation maximization    extended Kalman filter
收稿日期:  2013-12-30      修回日期:  2014-09-15           出版日期:  2015-02-15      发布日期:  2014-09-19      期的出版日期:  2015-02-15
ZTFLH:  V249.32+2  
  TP202+.1  
基金资助: 

国家自然科学基金(61174030,61304240,61374126,61473094);中国博士后科学基金(2014M552589)

通讯作者:  杨晓君 Tel.: 029-84741447 E-mail: yxj029@163.com    E-mail:  yxj029@163.com
作者简介:  冯磊 男,博士,讲师。主要研究方向:故障诊断、设备寿命预测与健康管理。E-mail:fengl1983@126.com;王宏力 男,博士,教授,博士生导师。主要研究方向:故障诊断、设备最优化管理、精确制导。Tel:029-84741361 E-mail:whl741361@sohu.com;杨晓君 男,博士,讲师。主要研究方向:设备寿命预测、数字信号处理、目标定位与跟踪。Tel:029-84741447 E-mail:yxj029@163.com
引用本文:    
冯磊, 王宏力, 司小胜, 杨晓君, 王标标. 基于半随机滤波-期望最大化算法的剩余寿命在线预测[J]. 航空学报, 2015, 36(2): 555-563.
FENG Lei, WANG Hongli, SI Xiaosheng, YANG Xiaojun, WANG Biaobiao. Real-time residual life prediction based on semi-stochastic filter and expectation maximization algorithm. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(2): 555-563.
链接本文:  
http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2014.0257  或          http://hkxb.buaa.edu.cn/CN/Y2015/V36/I2/555

[1] Si X S, Wang W B, Hu C H, et al. Remaining useful life estimation—a review on the statistical data driven approaches[J]. Europen Journal of Operational Research, 2011, 213(1): 1-14.

[2] Zio E, Peloni G. Praticle filtering prognostic estimation of the remaining useful life of nonlinear components[J]. Reliability Engineering and System Safety, 2011, 96(3): 403-409.

[3] Ghasemi A, Yacout S, Ouali M S. Evaluating the reliability function and the mean residual life for equipment with unobservable states[J]. IEEE Transactions on Reliability, 2010, 59(1): 45-54.

[4] Peng Y, Dong M. A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 237-252.

[5] Wang W B, Christer A H. Towards a general condition based maintenance model for a stochastic dynamic system[J]. Journal of the Operational Research Society, 2000, 51(2): 145-155.

[6] Wang W B. A prognosis model for wear prediction based on oil-based monitoring[J]. Journal of the Operational Research Society, 2006, 58(7): 887-893.

[7] Wang W B, Zhang W. An asset residual life prediction model based on expert judgments[J]. Europen Journal of Operational Research, 2008, 188(2): 496-505.

[8] Wang W B, Hussin B. Plant residual time modelling based on observed variables in oil samples[J]. Journal of the Operational Research Society, 2009, 60(6): 789-796.

[9] Carr M, Wang W B. Modeling failure modes for residual life prediction using stochastic filtering theory[J]. IEEE Transactions on Reliability, 2010, 59(2): 346-355.

[10] Carr M, Wang W B. An approximate algorithm for prognostic modeling using condition monitoring information[J]. Europen Journal of Operational Research, 2011, 211(1): 90-96.

[11] Wang W B. A model to predict the residual life of rolling element bearings given monitored condition information to date[J]. IMA Journal of Management Mathematics, 2002, 13(1): 3-16.

[12] Wang Z X. Optimal state estimation and system identification[M]. Xi'an: Northwestern Polytechnical University Press, 2004: 137-141 (in Chinese). 王志贤. 最优状态估计与系统辨识[M]. 西安: 西北工业大学出版社, 2004: 137-141.

[13] Zhou Z J, Hu C H, Yang J B, et al. Online updating belief-rule-based systems using the RIMER approach[J]. IEEE Transactions on Systems, Man and Cybernetics—Part A: Systems and Humans, 2011, 41(6): 1225-1243.

[14] Hu L, Zhou J X, Shi Z G, et al. An EM-based approach for compressed sensing using dynamic dictionaries[J]. Journal of Electronics & Information Technology, 2012, 34(11): 2554-2560 (in Chinese). 胡磊, 周剑雄, 石志广, 等. 利用期望-最大化算法实现基于动态词典的压缩感知[J]. 电子与信息学报, 2012, 34(11): 2554-2560.

[15] Borkar V, Ghosh M, Rangarajan G. Application of nonlinear filtering to credit risk[J]. Operations Research Letters, 2010, 38(6): 527-532.

[16] Hu C H, Ma Q L, Zheng J F. The control technique of missile testing and launching[M]. Beijing: National Defence Industry Press, 2010: 62-74 (in Chinese). 胡昌华, 马清亮, 郑建飞. 导弹测试与发射控制技术[M]. 北京: 国防工业出版社, 2010: 62-74.

[17] Si X S, Wang W B, Hu C H, et al. Remaining useful life estimation based on a nonlinear diffusion degradation process[J]. IEEE Transactions on Reliability, 2012, 61(1): 50-67.

[18] Hu C H, Si X S. Real-time parameters estimation of belief rule base health condition for inertial platform[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1454-1465 (in Chinese). 胡昌华, 司小胜. 基于信度规则库的惯性平台健康状态参数在线估计[J]. 航空学报, 2010, 31(7): 1454-1465.

[19] Akaike H. A new lool at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-722.

[20] Zhang B C, Han X X, Zhou Z J, et al. Construction of a new BRB based for time series forecasting[J]. Applied Soft Computing, 2013, 13(12): 4548-4556.

[21] Feng L, Wang H L, Si X S, et al. A state space based prognostic model for hidden and age-dependent nonlinear degradation process[J]. IEEE Transactions on Automation Science and Engineering, 2013, 10(4): 1072-1086.

[1] 邓小龙, 杨希祥, 麻震宇, 朱炳杰, 侯中喜. 基于风场环境利用的平流层浮空器区域驻留关键问题研究进展[J]. 航空学报, 2019, 40(8): 22941-022941.
[2] 王悦斌, 蒋景飞, 张建秋. 动态时频谱分析、探测和跟踪的随机有限集法[J]. 航空学报, 2019, 40(6): 322600-322600.
[3] 崔亚奇, 熊伟, 何友. 不确定航迹自适应预测模型[J]. 航空学报, 2019, 40(5): 322557-322557.
[4] 陈亚军, 刘辰辰, 王付胜. 预腐蚀和交替腐蚀作用下航空铝合金多轴疲劳行为及寿命预测[J]. 航空学报, 2019, 40(4): 222465-222465.
[5] 王肖, 郭杰, 唐胜景, 祁帅. 基于解析剖面的时间协同再入制导[J]. 航空学报, 2019, 40(3): 322565-322565.
[6] 胡晓安, 石多奇, 杨晓光, 于慧臣. TMF本构和寿命模型:从光棒到涡轮叶片[J]. 航空学报, 2019, 40(3): 422494-422494.
[7] 陈书钊, 楚龙飞, 杨秀梅, 蔡德淮. 状态预测神经网络控制应用于小型可回收火箭[J]. 航空学报, 2019, 40(3): 322286-322286.
[8] 徐燊, 朱顺鹏, 郝永振, 廖鼎. 基于临界面-损伤参量法的高压涡轮盘多轴疲劳寿命预测[J]. 航空学报, 2018, 39(9): 221930-221937.
[9] 张培红, 张耀冰, 周桂宇, 陈江涛, 邓有奇. 面向混合网格高精度阻力预测的熵修正方法[J]. 航空学报, 2018, 39(9): 122019-122030.
[10] 王楷, 徐世杰, 黎康, 汤亮. 双视线测量相对导航方法误差分析与编队设计[J]. 航空学报, 2018, 39(9): 322014-322028.
[11] 王萌萌, 张曙光. 基于模型预测静态规划的自适应轨迹跟踪算法[J]. 航空学报, 2018, 39(9): 322105-322113.
[12] 卢春光, 周中良, 刘宏强, 寇添, 杨远志. 带异步相关噪声的战斗机蛇形机动跟踪算法[J]. 航空学报, 2018, 39(8): 322071-322071.
[13] 熊青春, 王家序, 周青华. 融合机床精度与工艺参数的铣削误差预测模型[J]. 航空学报, 2018, 39(8): 421713-421713.
[14] 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7): 122039-122039.
[15] 方科, 张庆振, 倪昆, 程林, 黄云涛. 高超声速飞行器时间协同再入制导[J]. 航空学报, 2018, 39(5): 321958-321958.
[1] LIU Shi-bin. Study on Automatic Magnetic Deviation Compensation  of Magnetic Heading Measurement for UAV[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(2): 411 -414 .
[2] Zhang Yanjun;Chen Aixin. Design and Realization of Ka-band High-gain Circularly Polarized Airborne Microstrip Antenna Array[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(6): 1245 -1249 .
[3] Dong Yanfei;Wang Liyuan;Zhang Hengxi. Synthesized Index Model for Fighter Plane Air-to-surface Target Attacking Effectiveness Assessment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2007, 28(6): 1374 -1377 .
[4] Li Huili;Lang Lihui;Jiao Wei;Zhang Jianyong;Wu Xiaoping. Instability of Large-scale Isoshear Stress Wire-winding Prestressed Cylinder[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(10): 2062 -2067 .
[5] Bu Kun;Dong Yiwei;Yao Changfeng;Zhang Dinghua. Numerical Simulation Analysis of Displacement Field for Investment Casting[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(1): 165 -170 .
[6] Chen Jizheng;Yuan Jianping;Fang Qun. Attitude Estimation Algorithm Based on Rodrigues Parameter[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 29(4): 960 -965 .
[7] Zhai Weiwei;Zhang Gong;Liu Wenbo. Study of Reduced-rank STAP Based on Estimation of Clutter Subspace for MIMO Radar[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(9): 1824 -1831 .
[8] Zhang Shaojie;Hu Shousong. Neural Network Based Robust Adaptive Control for MIMO  Nonlinear Minimum Phase Systems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 29(5): 1302 -1307 .
[9] Wang Zhiqiang;Hu Jun;Wang Yingfeng;Zhai Xianchao. Aerodynamic Design of Low-speed Model Compressor for Low-speed Model Testing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(4): 715 -723 .
[10] LIU Gang;WANG Xing-ren;JIA Rong-zhen. Technique for Dynamic Virtual Prototype of Aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(5): 550 -555 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed