Acta Aeronautica et Astronautica Sinica ›› 2026, Vol. 47 ›› Issue (1): 331973.doi: 10.7527/S1000-6893.2025.31973
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Zan MA1,2, Jie BAI2(
), Liqin YAN2,3, Yong CHEN4, Shuguang SUN2,3
Received:2025-03-12
Revised:2025-04-29
Accepted:2025-07-07
Online:2025-07-28
Published:2025-07-18
Contact:
Jie BAI
E-mail:jbai@cauc.edu.cn
Supported by:CLC Number:
Zan MA, Jie BAI, Liqin YAN, Yong CHEN, Shuguang SUN. Safety assessment for airborne intelligent avoidance system based on Bayesian optimization[J]. Acta Aeronautica et Astronautica Sinica, 2026, 47(1): 331973.
Table 1
Safety assessment process of intelligent collision avoidance system with RL models
| 步骤 | 活动 |
|---|---|
| 步骤1:功能危害评估 | 在运行概念下进行系统功能危害分析(本文重点关注含RL模型错误“机动”功能危害) |
| 步骤2:初步系统安全性评估 | 1.定义安全性目标 2.定义初步系统架构以满足安全性目标 3.衍生包括独立需求的安全性需求,满足目标和支持架构 4.定义和确认假设 5.分配研制保证水平(DAL) 6.基于贝叶斯优化,通过不确定性探索、边界细化和失效区域采样函数,训练高斯代理模型 7.在冲突距离和冲突角度两维输入空间X和分布函数 8.衍生需求满足性的RL模型运行域(即安全边界) 9.执行RL单元失效模式影响分析 |
| 步骤3:系统安全性评估 | 执行最终的安全性评估 |
Table 2
Four evaluation methods for safety verification tasks
| 评估方法 | |||||
|---|---|---|---|---|---|
| 真实系统 | 20.8% | (0.867 93,1.895 79) | 1.496×10-3 | 8.410 72×10-5 | |
| 代理模型 | 50.2% | (0.861 72,1.895 79) | 1.396×10-3 | 8.407 26×10-5 | 4.12×10-4 |
| 均匀采样 | 21.7% | (0.838 70,1.935 48) | 9.543×10-4 | 8.055 44×10-5 | 4.22×10-2 |
| 蒙特卡洛 | 21.6% | (0.827 56,1.918 87) | 9.687×10-4 | 8.619 19×10-5 | 2.48×10-2 |
Table 3
Ablation study of three acquisition functions for safety validation task
| 获取函数组合 | |||||
|---|---|---|---|---|---|
| 不确定性探索 | 21.6% | (0.833 67,1.907 82) | 1.030×10-3 | 8.522 94×10-5 | 1.33×10-2 |
| 边界细化 | 35.5% | (0.861 72,1.899 80) | 1.368×10-3 | 8.628 98×10-5 | 2.59×10-2 |
| 失效区域采样 | 89.2% | (0.436 88,1.330 66) | 3.352×10-4 | 5.827 44×10-5 | 3.07×10-1 |
| 不确定性探索、边界细化 | 34.6% | (0.857 72,1.895 79) | 1.366×10-3 | 8.485 22×10-5 | 8.86×10-3 |
| 不确定性探索、失效区域采样 | 49.3% | (0.821 64,1.887 77) | 1.094×10-3 | 7.749 55×10-5 | 7.86×10-2 |
| 边界细化、失效区域采样 | 52.8% | (0.857 71,1.895 79) | 1.361×10-3 | 8.453 47×10-5 | 5.08×10-3 |
| 代理模型 | 50.2% | (0.861 72,1.895 79) | 1.396×10-3 | 8.407 26×10-5 | 4.12×10-4 |
| [1] | DIEZ-TOMILLO J, ALCARAZ-CALERO J M, WANG Q. Face verification algorithms for UAV applications: An empirical comparative analysis[J]. Journal of Communications Software and Systems, 2024, 20(1): 1-12. |
| [2] | 张学军, 李诚龙, 张志远, 等. 低空航行系统实时风险管理能力构建: 概念、挑战与技术[J]. 航空学报, 2025, 46(11): 8-34. |
| ZHANG X J, LI C L, ZHANG Z Y, et al. Constructing in-time risk management capabilities for low-altitude aviation systems: Concepts, technologies, and challenges[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 8-34 (in Chinese). | |
| [3] | 国家市场监督管理总局 国家标准化管理委员会. 民用无人驾驶航空器系统安全要求: [S]. 北京: 中国标准出版社, 2023. |
| Standardization Administration of the People’s Republic of China. Safety requirements for civil unmanned aircraft system: [S]. Beijing: Standards Press of China, 2023 (in Chinese). | |
| [4] | HARMAN W H. TCAS—A system for preventing midair collisions[J]. The Lincoln Laboratory Journal, 1989, 2(3): 437–457. |
| [5] | KOCHENDERFER M J, HOLLAND J E, CHRYSSANTHACOPOULOS J P. Next-generation airborne collision avoidance system[J]. Lincoln Laboratory Journal, 2012, 19(1): 17-33. |
| [6] | KOCHENDERFER M J, AMATO C, CHOWDHARY G, et al. Optimized airborne collision avoidance[M]∥Decision Making under Uncertainty: Theory and Application. Cambridge: MIT Press, 2015: 249-276. |
| [7] | ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: A brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38. |
| [8] | WULFE B. UAV collision avoidance policy optimization with deep reinforcement learning[D]. Palo Alto:Stanford University, 2017. |
| [9] | 汤新民, 李帅, 顾俊伟, 等. 一种无人机冲突探测与避让系统决策方法[J]. 电子与信息学报, 2025, 47(5): 1301-1309. |
| TANG X M, LI S, GU J W, et al. A decision-making method for UAV conflict detection and avoidance system[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1301-1309 (in Chinese). | |
| [10] | HU J M, YANG X X, WANG W C, et al. Obstacle avoidance for UAS in continuous action space using deep reinforcement learning[J]. IEEE Access, 2022, 10: 90623-90634. |
| [11] | 马赞, 白杰, 陈勇, 等. 基于条件高斯PAC-Bayes的机载CNN分类器安全性评估[J]. 航空学报, 2025, 46(4): 330824. |
| MA Z, BAI J, CHEN Y, et al. Safety assessment for airborne CNN classifier based on conditional Gaussian PAC-Bayes[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(4): 330824 (in Chinese). | |
| [12] | International Recommended Practice SAE. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment: ARP4761 [S]. Warrendale: SAE International, 1996. |
| [13] | CLAVIÈRE A, ASSELIN E, GARION C, et al. Safety verification of neural network controlled systems[C]∥2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). Piscataway: IEEE Press, 2021: 47-54. |
| [14] | BAK S. Nnenum: Verification of ReLU neural networks with optimized abstraction refinement[C]∥NASA Formal Methods. Cham: Springer, 2021: 19-36. |
| [15] | LECUN Y, CORTES C, BURGES C J C. The MNIST database of handwritten digits[EB/OL]. (2013-05-14)[2025-03-01]. . |
| [16] | KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 2009, 1(4): 1-57. |
| [17] | MAI V, MANI K, PAULL L. Sample efficient deep reinforcement learning via uncertainty estimation[DB/OL]. arXiv preprint: 2201.01666, 2022. |
| [18] | PUSTYNNIKOV A, EREMEEV D. Estimating uncertainty for vehicle motion prediction on yandex shifts dataset[DB/OL]. arXiv preprint: 2112.08355, 2021. |
| [19] | VAN DER LENDE M, SABATELLI M, CARDENAS-CARTAGENA J. Interpretable function approximation with Gaussian processes in value-based model-free reinforcement learning[C]∥Northern Lights Deep Learning Conference 2025. New York: PMLR, 2025: 141-154. |
| [20] | CORSO A, MOSS R, KOREN M, et al. A survey of algorithms for black-box safety validation of cyber-physical systems[J]. Journal of Artificial Intelligence Research, 2022, 72: 377-428. |
| [21] | TABANDEH A, JIA G F, GARDONI P. A review and assessment of importance sampling methods for reliability analysis[J]. Structural Safety, 2022, 97: 102216. |
| [22] | ALI B S, OCHIENG W Y, MAJUMDAR A. ADS-B: Probabilistic safety assessment[J]. Journal of Navigation, 2017, 70(4): 887-906. |
| [23] | GHATAS R, JACK D P, TSAKPINIS D, et al. Unmanned aircraft systems detect and avoid system: End-to-end verification and validation simulation study of minimum operational performance standards for integrating unmanned aircraft into the national airspace system[C]∥17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017. |
| [24] | SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[DB/OL]. arXiv preprint: 1707.06347, 2017. |
| [25] | GENTON M G. Classes of kernels for machine learning: A statistics perspective[J]. Journal of Machine Learning Research, 2002, 2: 299-312. |
| [26] | KCOHENDERFER M J, WHEELER T A. Algorithms for optimization[M]. Cambridge: MIT Press, 2019: 1-20. |
| [27] | MURPHY K P. Machine learning: A probabilistic perspective[M]. Cambridge: MIT Press, 2012: 253-254 |
| [28] | BISHOP, C M, NASRABADI N M. Pattern recognition and machine learning[M]. New York: springer, 2006: 365-366. |
| [29] | QUIÑONERO-CANDELA J, RASMUSSEN C E. A unifying view of sparse approximate Gaussian process regression[J]. Journal of Machine Learning Research, 2005, 6: 1939-1959. |
| [30] | JARUS Working Group 4. Detect and avoid-A working paper-Draft version 0.7[Z]. Joint Authorities for Rulemaking on Unmanned Systems (JARUS), 2015. |
| [31] | TABASSUM A, SABATINI R, GARDI A. Probabilistic safety assessment for UAS separation assurance and collision avoidance systems[J]. Aerospace, 2019, 6(2): 19. |
| [32] | RASCH M, UBBEN P T, MOST T, et al. Safety assessment and uncertainty quantification of automated driver assistance systems using stochastic analysis methods[C]∥NAFEMS World Congress 2019. Knutsford: NAFEMS, 2019: 16. |
| [1] | Tao ZHANG, Pan LI, Zixu WANG, Zhenhua ZHU. Design of reward functions for helicopter attitude control in reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(S1): 732184-732184. |
| [2] | Kaifang WAN, Zhilin WU, Yunhui WU, Haozhi QIANG, Yibo WU, Bo LI. Cooperative location of multiple UAVs with deep reinforcement learning in GPS-denied environment [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 331024-331024. |
| [3] | Lingfeng JIANG, Xinkai LI, Hai ZHANG, Hanwei LI, Hongli ZHANG. Mapless navigation of UAVs in dynamic environments based on an improved TD3 algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 331035-331035. |
| [4] | Zan MA, Jie BAI, Yong CHEN, Ruihua LIU, Yanting ZHANG. Safety assessment for airborne CNN classifier based on conditional Gaussian PAC-Bayes [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(4): 330824-330824. |
| [5] | Min YANG, Guanjun LIU, Ziyuan ZHOU. Control of lunar landers based on secure reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 630553-630553. |
| [6] | Qichao XIE, Chengyu CAO, Yiyun ZHAO, Fanbiao LI. Integrated guidance and control method based on deep reinforcement learning parameter tuning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(24): 632345-632345. |
| [7] | Jiachen LIU, Lei DONG, Zijing SUN, Ye NI, Xi CHEN, Peng WANG. An explainable decision-making method for resource allocation in IMA system based on PPO-SHAP [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(24): 331872-331872. |
| [8] | Tianqi FAN, Zhengxia ZOU, Zhenwei SHI. Typical remote sensing target detection with data synthesis based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(23): 631955-631955. |
| [9] | Chen WANG, Caisheng WEI, Zeyang YIN, Kai JIN, Xingchen LI. Collaborative planning of multi-UAV trajectories and communication strategies considering channel resource constraints [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 331837-331837. |
| [10] | Yizhe LUO, Hui ZHANG, Xinde YU, Zhao JIN, Shuo FENG, Yucheng SHI, Mingling XU. Hierarchical dynamic scheduling for multi-wave carrier-based aircraft ammunition support missions [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 331945-331945. |
| [11] | Xiangsong HUANG, Mengyu WANG, Dapeng PAN. Adversarial reinforcement learning-based UAV escape path planning method [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(17): 331637-331637. |
| [12] | Yu WANG, Zhipeng XIE, Yongjian TIAN, Guanglei MENG. Distributed UAV formation control with virtual structure guided reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(15): 331354-331354. |
| [13] | Wei CHEN, Lulu LI, Dong CHEN, Shaohui ZHANG, Yafei LI, Ke WANG, Yuanyuan JIN, Mingliang XU. Multi-aircraft cooperative decision-making methods driven by differentiated support demands for carrier-based aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531274-531274. |
| [14] | Xudong CHEN, Qiqi CHEN, Yizhe LUO, Jiabao WANG, Mingliang XU. Dynamic parallel scheduling of heterogeneous carrier-based aircraft deck support operations [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531329-531329. |
| [15] | Zheng WANG, Hua WANG, Keke CUI, Chaochao LI, Junnan LIU, Mingliang XU. Locally guided reinforcement learning for autonomous dispatching of carrier-based aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531333-531333. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

