Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (20): 531941.doi: 10.7527/S1000-6893.2025.31941
• Special Issue: Key Technologies for Supersonic Civil Aircraft • Previous Articles
Wei WANG1(
), Junfu LI1,2,3, Fengxue QIAN4, Yuting TAN1,2, Yan ZHAO1,2, Bowen ZHAO1,2, Qing CHEN2,3, Ke SONG2,3
Received:2025-03-05
Revised:2025-03-27
Accepted:2025-04-17
Online:2025-05-09
Published:2025-05-08
Contact:
Wei WANG
E-mail:617591061@qq.com
Supported by:CLC Number:
Wei WANG, Junfu LI, Fengxue QIAN, Yuting TAN, Yan ZHAO, Bowen ZHAO, Qing CHEN, Ke SONG. Wind tunnel test of low sonic boom high efficiency layout for supersonic civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531941.
| [1] | PLOTKIN K, MAGLIERI D. Sonic boom research: History and future[C]∥33rd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2003. |
| [2] | SAKATA K. Supersonic experimental airplane (NEXST) for next generation SST technology-development and flight test plan for the unmanned scaled supersonic glider[C]∥40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
| [3] | MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Advanced concept studies for supersonic commercial transports entering service in 2030-35(N+3)[C]∥28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010. |
| [4] | LIEBHARDT B, LÜTJENS K, UENO A, et al. JAXA’s S4 supersonic low-boom airliner—A collaborative study on aircraft design, sonic boom simulation, and market prospects[C]∥AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
| [5] | BUONANNO M. Conceptual design of a quiet supersonic technology airliner[EB/OL]. Montgomery: Lockheed Martin, 2019. . |
| [6] | RICHWINE D M, BRANDON J M. Quiet supersonic technology (QueSST) aircraft preliminary design status and low-boom flight demonstration (LBFD) project update[C]∥AIAA SciTech. Reston: AIAA, 2018. |
| [7] | NEMEC M, AFTOSMIS M, SPURLOCK W. Minimizing sonic boom through simulation-based design: The X-59 airplane: 20200000625[R]. Washington, D.C.: NASA, 2020. |
| [8] | XB-1 Goes Mach 1[EB/OL]. Denver: Boom Supersonic[March 2024]. . |
| [9] | CANDEL S. Concorde and the future of supersonic transport[J]. Journal of Propulsion and Power, 2004, 20(1): 59-68. |
| [10] | 高培仁. 图144运输机[J]. 民用飞机设计与研究, 2015 (3): 99-100. |
| GAO P R. Tu-144 supersonic transport[J]. Civil Aircraft Design and Research, 2015 (3): 99-100 (in Chinese). | |
| [11] | BAIZE D G. The 1995 NASA high-speed research program sonic boom workshop: NASA-CP-3335-Vol-1[R]. Washington, D.C.: NASA, 1996. |
| [12] | BOEING COMMERCIAL AIRPLANES. High-speed civil transport study. Summary: NASA-CR-4233[R]. Washington, D.C.: NASA, 1989. |
| [13] | DOUGLAS AIRCRAFT COMPANY. Study of high-speed civil transports: NASA CR-1989-4235[R]. Washington, D.C.: NASA, 1989. |
| [14] | GREEN P K, PACULL M, REIMERS H D. European 2nd generation supersonic commercial transport aircraft[C]∥Proceedings of the 20th International Congress of the Aeronautical Sciences. 1996. |
| [15] | YAMAKAMI K, NAKAHASHI K, OBAYASHI S. Aerodynamic design and CFD evaluation of a high-speed commercial transport: NAL SP-34[R]. Tokyo: National Aerospace Laboratory, 1997. |
| [16] | ASHBY C P, LOWE B M, HOUSMAN J A, et al. Anisotropic Mach cone aligned mesh adaptation for low boom simulations[J]. AIAA Journal, 2024, 62(6): 2076-2094. |
| [17] | FOSTER Z N, TAYLOR J, HUNSAKER D F. Effects of equivalent area changes on boom loudness of the N+2 supersonic transport concept vehicle[C]∥AIAA SCITECH 2025 Forum. Reston: AIAA, 2025. |
| [18] | NIKBAY M, KILIC D, CAKMAK E, et al. Multi-fidelity and multi-disciplinary design optimization of a low-boom supersonic transport aircraft[C]∥AIAA SCITECH 2023 Forum. Reston: AIAA, 2023. |
| [19] | HAN Z H, QIAO J L, ZHANG L W, et al. Recent progress of efficient low-boom design and optimization methods[J]. Progress in Aerospace Sciences, 2024, 146: 101007. |
| [20] | DING Y L, HAN Z H, QIAO J L, et al. Inverse design method for low-boom supersonic transport with lift constraint[J]. AIAA Journal, 2023, 61(7): 2840-2853. |
| [21] | BUSHNELL D M. Supersonic transport optimization concepts[J]. Progress in Aerospace Sciences, 2024, 146: 100993. |
| [22] | 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5): 121736. |
| QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121736 (in Chinese). | |
| [23] | 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022, 43(12): 025649. |
| ZHANG L W, SONG W P, HAN Z H, et al. Recent progress of sonic boom generation, propagation, and mitigation mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 025649 (in Chinese). | |
| [24] | MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Advanced concept studies for supersonic commercial transports entering service in the 2018—2020 period phase 2: NASA/CR-2015-218719[R]. Washington, D.C.: NASA, 2015. |
| [25] | 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310. |
| DING Y L, HAN Z H, QIAO J L, et al. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626310 (in Chinese). | |
| [26] | 李军府, 陈晴, 王伟, 等. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613. |
| LI J F, CHEN Q, WANG W, et al. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613 (in Chinese). | |
| [27] | WEDGE H R, BONET J, MAGEE T, et al. N+2 supersonic concept development and systems integration: NASA/CR-2010-216842[R]. Washington, D.C.: NASA, 2010. |
| [28] | CARLSON H W. An investigation of some aspects of the sonic boom by means of wind-tunnel measurements of pressures about several bodies at a Mach number of 2.01: NASA TND-161[R]. Washington, D.C.: NASA 1959. |
| [29] | CARLSON H W, MORRIS O A. Wind-tunnel sonic-boom testing techniques[J]. Journal of Aircraft, 1967, 4(3): 245-249. |
| [30] | EDGE P M JR, HUBBARD H H. Review of sonic-boom simulation devices and techniques[J]. The Journal of the Acoustical Society of America, 1972, 51(2C): 722-728. |
| [31] | DURSTON D A, CLIEF S E, WAYMAN T R, et al. Near field sonic boom test on two low-boom configuratiuons using multiple measurement techniques at NASA Ames[C]∥29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011. |
| [32] | DURSTON D A, ELMILIGUI A A, CLIFF S E, et al. Experimental and computational sonic boom assessment of boeing N+2 low boom models[C]∥32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014. |
| [33] | SCHOPPE J M, WEAVER-ROSEN J, CIZMAS P, et al. A methodology for controlling sonic boom loudness of an N+2 aircraft configuration[C]∥AIAA SCITECH 2025 Forum. Reston: AIAA, 2025. |
| [34] | CLIFF S E, DURSTON D, CHAN W M, et al. Computational and experimental assessment of models for the first AIAA sonic boom prediction workshop[C]∥52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
| [35] | 刘中臣, 钱战森, 冷岩. 声爆近场压力测量风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(4): 636-645. |
| LIU Z C, QIAN Z S, LENG Y. Review of recent progress of wind tunnel measurement techniques for off-body sonic boom pressure[J]. Acta Aerodynamica Sinica, 2019, 37(4): 636-645 (in Chinese). | |
| [36] | 刘中臣, 钱战森, 冷岩, 等. 声爆近场空间压力风洞测量技术[J]. 航空学报, 2020, 41(4): 123596. |
| LIU Z C, QIAN Z S, LENG Y, et al. Wind tunnel measurement techniques for sonic boom near-field pressure[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 123596 (in Chinese). | |
| [37] | 韩忠华, 钱战森, 乔建领. 声爆预测与低声爆设计方法[M]. 北京: 科学出版社, 2022: 7-8. |
| HAN Z H, QIAN Z S, QIAO J L. Prediction of sonic boom and design method of low sonic boom[M]. Beijing: Science Press, 2022: 7-8 (in Chinese). | |
| [38] | CLIFF S E, DURSTON D A, ELMILIGUI A A, et al. Experimental and computational sonic boom assessment of Lockheed-Martin N+2 low boom models: NASA/TP-2015-218483[R]. Washington, D.C.: NASA, 2015. |
| [1] | Kelei WANG, Zhou ZHOU, Minghao LI. Research and experimental validation of loose coupling design method for propulsion wing unit [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 212-229. |
| [2] | Lixiang WEI, Jinglei XU, Kuangshi CHEN, Shuai HUANG, Jianhui GE, Guangtao SONG. Scheme design and performance study of adjustable vector nozzle for wide-range hypersonic aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631086-631086. |
| [3] | Xian YI, Jinghao REN, Qingren LAI, Yu LIU, Qiang WANG. Icing characteristics of full-scale multi-element configurations of large aircraft: Computation and experiment [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531575-531575. |
| [4] | Zhiqiang WAN, Shanshan ZHANG, Xiaozhe WANG, Liang MA, Ao XU, Zhigang WU, Chao YANG. Maneuver load analysis and alleviation technology of flexible aircraft: Review [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 30279-030279. |
| [5] | Bin LIANG, Junbo ZHAO, Zengliang FU, Jiajian ZHOU, Ping ZHOU, Shiyu ZHANG, Weiqi SUN. Effect of gas mass injection on pitching characteristics of blunt cone [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 130822-130822. |
| [6] | Kefeng ZHENG, Wenping SONG, Han NIE, Yulin DING, Jianling QIAO, Qing CHEN, Yiheng WANG, Ke SONG, Keshi ZHANG. Natural laminar flow wing design method for supersonic civil aircraft considering full-aircraft sonic-boom characteristics [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531214-531214. |
| [7] | Chao YANG, Yuting TAN, Wei WANG, Yan ZHAO, Xiongqing YU. Multidisciplinary optimization with low-boom design for supersonic civil aircraft conceptual design [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531457-531457. |
| [8] | Linxuan YANG, Huicai MA, Liping PANG. Design and performance simulation of environmental control system for supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531585-531585. |
| [9] | Tianyu GONG, Chengjun SHAN, Lizhe YI, Yaosong LONG, Zhongtao CHENG. Impact of engine geometric parameters on sonic boom characteristics of supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531592-531592. |
| [10] | Liwen ZHANG, Zhonghua HAN, Keshi ZHANG, Ke SONG, Wenping SONG. High-fidelity numerical simulation of near-/mid-field sonic boom propagation using a space-marching method for supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531935-531935. |
| [11] | Yutong WANG, Xiao LUO, Hongyang LIU, Chao SONG, Ying ZHAO, Zhu ZHOU. Sonic boom prediction of supersonic passenger aircraft based on multi-fidelity deep neural network [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531936-531936. |
| [12] | Zuotai LI, Shusheng CHEN, Shiyi JIN, Zhenghong GAO, Weiguo ZHOU. Optimization design and data mining for supersonic civil aircraft based on sonic boom efficient prediction [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531920-531920. |
| [13] | Qing CHEN, Zhonghua HAN, Keshi ZHANG, Jianling QIAO, Yulin DING, Wenping SONG. A full-carpet design optimization method for low-boom supersonic civil aircraft configuration [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531909-531909. |
| [14] | Hui ZHANG, Junqiang AI, Kun QIN, Xiangxi TANG, Jun JI. Wind tunnel test for thrust characteristics of supersonic ejector exhaust system [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531934-531934. |
| [15] | Zhenrong LIAO, Junfu LI, Bowen ZHAO, Ming ZHANG, Lu XIE, Zhonghua HAN, Mengqi AI. Broad-speed-range wing design of supersonic civil aircraft based on engineering [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531915-531915. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

