Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (18): 431686.doi: 10.7527/S1000-6893.2025.31686
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
Jihong ZHU1,2, Jiacheng HAN1,2, Xiaojun GU3, Yahui ZHANG1,2, Jun WANG3, Jie HOU1,2, Weihong ZHANG1(
)
Received:2024-12-19
Revised:2025-01-02
Accepted:2025-02-01
Online:2025-09-25
Published:2025-02-28
Contact:
Weihong ZHANG
E-mail:zhangwh@nwpu.edu.cn
Supported by:CLC Number:
Jihong ZHU, Jiacheng HAN, Xiaojun GU, Yahui ZHANG, Jun WANG, Jie HOU, Weihong ZHANG. Advances and challenges in cross-domain vehicle structures and morphing configuration design technologies[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 431686.
Table 1
Several base configurations suitable for cross-domain vehicles
| 基础气动构型 | 特征及原理 | 优势 | 劣势 | 研究案例 | |
|---|---|---|---|---|---|
| 宽速域乘波体 | 组合式 构型 | 特征:多个乘波体串/并联或多级乘波面组合 原理:折中多个构型段性能,实现综合更优 | 设计简单,结构紧凑,易于工程化 | 容积率低,折中方案会牺牲各乘波体的最佳性能 | 串/并联乘波体[ |
| 涡升力乘波体构型 | 特征:前缘平面及上表面可产生强前缘涡 原理:耦合涡升力机制 | 在不降低设计点工况气动性能的情况下,有效改善亚/跨声速性能 | 涡波效应理论尚不成熟,对低马赫数超声速飞行性能提升效果有限 | 双后掠乘波体外形设计方法[ | |
| 高压捕获翼构型 | 特征:飞行器背风面具有平行于来流方向的曲面翼 原理:曲面翼捕获高压来流,产生升力 | 高容积率,设计简单,有效提高升阻比 | 增加了气动复杂性,可能加剧局部气动热效应,对结构刚度要求较高 | 高压捕获翼设计及气动分析[ | |
| 双向飞翼构型 | 特征:展向与弦向均对称,发动机与机身夹角可变 原理:变展弦比 | 高效低噪,设计简单,大容量 | 模态转换难,大展弦比状态下稳定性差,飞行器与发动机耦合设计难 | 双向飞翼飞行器布局设计及气动分析[ | |
Table 2
Morphing forms for cross-domain vehicles
| 变体部位 | 变体形式 | 适用场景 | 气动影响 | 研究及应用案例 |
|---|---|---|---|---|
| 机翼 | 伸缩、折叠、扭转、变后掠等 | 低速起降、超声速巡航、机动飞行 | 提高升阻比、降低最小起降速度、提高稳定性和机动性 | 研究:剪切变后掠无人机MFX-1[ 应用:F-14、B-1B、Tu-160、XB-70等 |
| 头锥 | 变半径、长度、偏转角等 | 高超声速飞行 | 降低激波阻力、减小气动热载荷、提高机动性 | 研究:仿生变体头锥[ 应用:目前仍缺乏工程案例 |
Table 3
Influence of wing parameters on aerodynamic performance[74]
| 几何参数 | 变化趋势 | 气动性能影响趋势 |
|---|---|---|
| 机翼面积 | 增大 | 提高:升力、承载能力 |
| 减小 | 降低:寄生阻力 | |
| 展弦比 | 增大 | 提高:升阻比、续航能力、巡航距离、偏航速率 降低:发动机要求 |
| 减小 | 提高:最大速度 降低:寄生阻力 | |
| 机翼上反角 | 增大 | 提高:偏航性能、侧向稳定性 |
| 减小 | 提高:最大速度 | |
| 机翼后掠角 | 增大 | 提高:临界马赫数、上翻效应 降低:高速阻力 |
| 减小 | 提高:最大升力系数 | |
机翼根梢比 机翼扭转 翼型弯度 | 影响展向升力系数分布及诱导阻力 影响翼尖失速及展向升力分布 影响零升迎角、翼型效率、分离特性 | |
| 翼型相对厚度 | 增大 | 改善:低速翼型性能 |
| 减小 | 改善:高速翼型性能 | |
| 前缘半径 | 增大 | 改善:低速翼型性能 |
| 减小 | 改善:高速翼型性能 | |
| 翼型厚度分布 | 影响翼型特性、层流向湍流过渡 |
| [1] | YUAN C, LÜ X Z, BAO W M. Thermal protection performance of biomimetic flexible skin for deformable high-speed vehicles (DHSV-bio-FS) under uniaxial tensile strain[J]. Research, 2024, 7: 0394. |
| [2] | 李宪开, 王霄, 柳军, 等. 水平起降高超声速飞机气动布局技术研究[J]. 航空科学技术, 2020, 31(11): 7-13. |
| LI X K, WANG X, LIU J, et al. Research on the aerodynamic layout design for the horizontal take-off and landing hypersonic aircraft[J]. Aeronautical Science & Technology, 2020, 31(11): 7-13 (in Chinese). | |
| [3] | 王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学: 技术科学, 2009, 39(11): 1828-1835. |
| WANG F M, DING H H, LEI M F. Aerodynamic characteristics research on wide-speed range waverider configuration[J]. SCIENTIA SINICA Technologica, 2009, 39(11): 1828-1835 (in Chinese). | |
| [4] | 李世斌. 新概念宽速域飞行器气动外形设计与优化[D]. 长沙: 国防科学技术大学, 2012: 27-30. |
| LI S B. Design and optimization of aerodynamic configuration for the novel-concept vehicle with the wide-range Mach numbers[D]. Changsha: National University of Defense Technology, 2012: 27-30 (in Chinese). | |
| [5] | LI S B, LUO S B, HUANG W, et al. Influence of the connection section on the aerodynamic performance of the tandem waverider in a wide-speed range[J]. Aerospace Science and Technology, 2013, 30(1): 50-65. |
| [6] | 丁峰. 高超声速滑翔—巡航两级乘波设计方法研究[D]. 长沙: 国防科学技术大学, 2012: 63-66. |
| DING F. Design study of hypersonic slide-cruise two-stage waverider[D]. Changsha: National University of Defense Technology, 2012: 63-66 (in Chinese). | |
| [7] | 王庆文. 基于吻切理论的两级乘波体设计[D]. 长沙: 国防科学技术大学, 2015: 40-42. |
| WANG Q W. The osculating method of the dual waverider geometry generation[D]. Changsha: National University of Defense Technology, 2015: 40-42 (in Chinese). | |
| [8] | 刘珍. 吻切流场乘波气动设计理论和方法研究[D]. 长沙: 国防科学技术大学, 2018: 37-40. |
| LIU Z. Research on novel aerodynamic design theory and methodology for osculating flowfield waverider[D]. Changsha: National University of Defense Technology, 2018: 37-40 (in Chinese). | |
| [9] | LIU C Z, MENG X, BAI P. Design and analysis of double-swept waverider with wing dihedral[J]. AIAA Journal, 2021, 60(1): 1-10. |
| [10] | ZHAO Z T, HUANG W, YAN B B, et al. Design and high speed aerodynamic performance analysis of vortex lift waverider with a wide-speed range[J]. Acta Astronautica, 2018, 151: 848-863. |
| [11] | 刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析[J]. 航空学报, 2017, 38(6): 120808. |
| LIU C Z, BAI P, CHEN B Y. Design and property advantages analysis of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120808 (in Chinese). | |
| [12] | 刘传振, 刘强, 白鹏, 等. 涡波效应宽速域气动外形设计[J]. 航空学报, 2018, 39(7): 121824. |
| LIU C Z, LIU Q, BAI P, et al. Aerodynamic shape design integrating vortex and shock effects for width-velocity-range[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121824 (in Chinese). | |
| [13] | CUI K, LI G L, XIAO Y B, et al. High-pressure capturing wing configurations[J]. AIAA Journal, 2017, 55: 1909-1919. |
| [14] | 李广利, 崔凯, 胡守超, 等. 乘波体组合高压捕获翼构型的性能分析[J]. 计算机辅助工程, 2014, 23(4): 53-56. |
| LI G L, CUI K, HU S C, et al. Performance analysis on configuration combined by waverider and high pressure zone capture wing[J]. Computer Aided Engineering, 2014, 23(4): 53-56 (in Chinese). | |
| [15] | 李广利, 崔凯, 肖尧, 等. 高压捕获翼前缘型线优化和分析[J]. 力学学报, 2016, 48(4): 877-885. |
| LI G L, CUI K, XIAO Y, et al. Leading edge optimization and parameter analysis of high pressure capturing wings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 877-885 (in Chinese). | |
| [16] | 李广利, 崔凯, 肖尧, 等. 高压捕获翼位置设计方法研究[J]. 力学学报, 2016, 48(3): 576-584. |
| LI G L, CUI K, XIAO Y, et al. The design method research for the position of high-pressure capturing wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 576-584 (in Chinese). | |
| [17] | 王浩祥, 李广利, 徐应洲, 等. 高压捕获翼构型跨声速流动特性初步研究[J]. 空气动力学学报, 2020, 38(3): 441-447. |
| WANG H X, LI G L, XU Y Z, et al. Preliminary study on transonic flow characteristics of a high-pressure capturing wing configuration[J]. Acta Aerodynamica Sinica, 2020, 38(3): 441-447 (in Chinese). | |
| [18] | 王浩祥, 李广利, 杨靖, 等. 高压捕获翼构型亚跨超流动特性数值研究[J]. 力学学报, 2021, 53(11): 3056-3070. |
| WANG H X, LI G L, YANG J, et al. Numerical study on flow characteristics of high-pressure capturing wing configuration at subsonic, transonic and supersonic regime[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3056-3070 (in Chinese). | |
| [19] | 王浩祥, 肖尧, 张凯凯, 等. 机体尾缘形状对高压捕获翼构型亚声速特性影响[J]. 航空学报, 2023, 44(6): 127215. |
| WANG H X, XIAO Y, ZHANG K K, et al. Effect of body trailing edge shape on subsonic flow characteristics of high-pressure capturing wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 127215 (in Chinese). | |
| [20] | ESPINAL D, IM H, LEE B, et al. Supersonic bi-directional flying wing, part Ⅱ: conceptual design of a high speed civil transport[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
| [21] | ZHA G C, IM H S, ESPINAL D A. Toward zero sonic-boom and high efficiency super-sonic flight, part Ⅰ: a novel concept of supersonic bi-directional flying wing[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
| [22] | 刘晓斌, 徐柯哲, 朱国祥. 双向飞翼空天飞行器概念外形研究[J]. 空气动力学学报, 2017, 35(3): 415-420, 443. |
| LIU X B, XU K Z, ZHU G X. Research on bi-directional flying wing space shuttle configuration[J]. Acta Aerodynamica Sinica, 2017, 35(3): 415-420, 443 (in Chinese). | |
| [23] | BERGER C, CARMONA K, ESPINAL D A, et al. Supersonic bi-directional flying wing configuration with low sonic boom and high aerodynamic efficiency[C]∥Proceedings of the 29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011. |
| [24] | GUAN X H. Supersonic bi-directional flying wing wave drag optimization based on alternative form of CST method[J]. Applied Mechanics and Materials, 2013, 477-478: 240-245. |
| [25] | NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. The Journal of the Royal Aeronautical Society, 1959, 63: 521-528. |
| [26] | KÜCHEMANN D. The aerodynamic design of aircraft[M]. Oxford: Pergamon Press, 1978: 131-147. |
| [27] | O’NEILL M K L, LEWIS M J. Design tradeoffs on scramjet engine integrated hypersonic waverider vehicles[J]. Journal of Aircraft, 1993, 30: 943-952. |
| [28] | QU Z P, XIAO H D, LI G L, et al. Numerical study on aerodynamic performance of waverider with a new bluntness method[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(10): 1225-1233. |
| [29] | LI G L, CUI K, XU Y Z, et al. Experimental investigation of a hypersonic I-shaped configuration with a waverider compression surface[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(5): 254721. |
| [30] | 李文杰, 钱开耘, 古雨田. HTV-2项目取得重大进展[J]. 飞航导弹, 2010(9): 29-32. |
| LI W J, QIAN K Y, GU Y T. Significant progress in HTV-2 project[J]. Aerodynamic Missile Journal, 2010(9): 29-32 (in Chinese). | |
| [31] | 田剑威. “东风”快递, 使命必达——“东风”17展现中国火箭军“低调华丽”[J]. 坦克装甲车辆, 2019(23): 27-29, 2. |
| TIAN J W. “Dongfeng” express, the mission will be reached- “Dongfeng” 17 show China’s rocket force “low-key gorgeous”[J]. Tank & Armoured Vehicle, 2019(23): 27-29, 2 (in Chinese). | |
| [32] | 王友利, 才满瑞. 美国X-51A项目总结与前景分析[J]. 飞航导弹, 2014(3): 17-21. |
| WANG Y L, CAI M R. U.S. X-51A program summary and prospect analysis[J]. Aerodynamic Missile Journal 2014(3): 17-21 (in Chinese). | |
| [33] | 张斌, 许爱军, 代国宝, 等. 美国X-43A高超声速飞行器先进制造技术分析[J]. 战术导弹技术, 2022(7): 1-5. |
| ZHANG B, XU A J, DAI G B, et al. Analysis of advanced manufacturing technology for X-43A hypersonic vehicle in USA[J]. Tactical Missile Technology, 2022(7): 1-5 (in Chinese). | |
| [34] | 陈树生, 冯聪, 张兆康, 等. 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计[J]. 航空学报, 2024, 45(6): 629596. |
| CHEN S S, FENG C, ZHANG Z K, et al. Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629596 (in Chinese). | |
| [35] | 王尘航, 金亮, 赵振涛, 等. 宽速域乘波飞行器气动设计研究综述[J]. 航空兵器, 2024, 31(4): 1-13. |
| WANG C H, JIN L, ZHAO Z T, et al. A review of aerodynamic design for wide-speed range waverider vehicle[J] Aero Weaponry, 2024, 31(4): 1-13 (in Chinese). | |
| [36] | ZHAO Z T, HUANG W, LI S B, et al. Variable Mach number design approach for a parallel waverider with a wide-speed range based on the osculating cone theory[J]. Acta Astronautica, 2018, 147: 163-174. |
| [37] | RODI P. Vortex lift waverider configurations[C]∥Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
| [38] | 段焰辉, 范召林, 吴文华. 定后掠角密切锥乘波体的生成和设计方法[J]. 航空学报, 2016, 37(10): 3023-3034. |
| DUAN Y H, FAN Z L, WU W H. Generation and design methods of osculating cone waverider with constant angle of sweepback[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3023-3034 (in Chinese). | |
| [39] | 刘超宇, 屈峰, 李杰奇, 等. 涡波一体乘波飞行器宽速域气动优化设计研究[J]. 力学学报, 2023, 55(1): 70-83. |
| LIU C Y, QU F, LI J Q, et al. Aerodynamic optimization design of the vortex-shock integrated waverider in wide speed range[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 70-83 (in Chinese). | |
| [40] | 崔凯, 李广利, 胡守超, 等. 高速飞行器高压捕获翼气动布局概念研究[J]. 中国科学:物理学 力学 天文学, 2013, 43(5): 652-661. |
| CUI K, LI G L, HU S C, et al. Conceptual studies of the high pressure zone capture wing configuration for high speed air vehicles[J]. SCIENCE CHINA Physics, Mechanics & Astronomy, 2013, 43(5): 652-661 (in Chinese). | |
| [41] | 常思源, 肖尧, 李广利, 等. 翼反角对高压捕获翼构型亚声速气动特性影响分析研究[J]. 力学学报, 2022, 54(10): 2760-2772. |
| CHANG S Y, XIAO Y, LI G L, et al. Effect of wing dihedral and anhedral angles on subsonic aerodynamic characteristics of HCW configuration[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2760-2772 (in Chinese). | |
| [42] | 常思源, 肖尧, 李广利, 等. 翼反角对高压捕获翼构型高超气动特性的影响[J]. 航空学报, 2023, 44(8): 127349. |
| CHANG S Y, XIAO Y, LI G L, et al. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 127349 (in Chinese). | |
| [43] | 常思源, 田中伟, 李广利, 等. 基于气动导数的高压捕获翼飞行器纵向稳定性数值研究[J]. 中国科学: 技术科学, 2024, 54(2): 275-288. |
| CHANG S Y, TIAN Z W, LI G L, et al. Numerical study on longitudinal stability for HCW aircraft based on aerodynamic derivatives[J]. SCIENTIA SINICA Technologica, 2024, 54(2): 275-288 (in Chinese). | |
| [44] | 周梦贝. 一种新型飞翼布局飞行器气动性能分析与虚拟飞行验证[D]. 南京: 南京航空航天大学, 2021:8-11. |
| ZHOU M B. Aerodynamic performance analysis and virtual flight verification of a new type of flying wing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 8-11 (in Chinese). | |
| [45] | 周梦贝, 史志伟, 陈杰, 等. 基于风洞虚飞实验的双向飞翼纵向控制研究[J]. 飞行力学, 2021, 39(3): 88-94. |
| ZHOU M B, SHI Z W, CHEN J, et al. Research on longitudinal control of bidirectional flying wing based on wind tunnel virtual flight test[J]. Flight Dynamics, 2021, 39(3): 88-94 (in Chinese). | |
| [46] | GAN J Y, ZHA G. H Analysis of a low boom supersonic flying wing preliminary design[M]. Reston: AIAA, 2015: 133-157. |
| [47] | 孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报, 2018, 39(6): 121737. |
| SUN X C, HAN Z H, LIU F, et al. Design and analysis of hypersonic vehicle airfoil/ wing at wide-range Mach numbers[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 121737 (in Chinese). | |
| [48] | 张阳, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型高效多目标优化设计方法研究[J]. 航空科学技术, 2020, 31(11): 14-24. |
| ZHANG Y, HAN Z H, LIU F, et al. Efficient multi-objective shape optimization method of hypersonic wide-Mach-number-range airfoil[J]. Aeronautical Science & Technology, 2020, 31(11): 14-24 (in Chinese). | |
| [49] | 张阳, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型多目标优化设计研究[J]. 气体物理, 2019, 4(4): 26-40. |
| ZHANG Y, HAN Z H, LIU F, et al. Multi-objective aerodynamic shape optimization of wide-Mach-number-range airfoil[J]. Physics of Gases, 2019, 4(4): 26-40 (in Chinese). | |
| [50] | 张阳, 韩忠华, 周正, 等. 面向高超声速飞行器的宽速域翼型优化设计[J]. 空气动力学学报, 2021, 39(6): 111-127. |
| ZHANG Y, HAN Z H, ZHOU Z, et al. Aerodynamic design optimization of wide-mach-number-range airfoils for hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2021, 39(6): 111-127 (in Chinese). | |
| [51] | 孙永泽, 陆忠华. 基于超限学习机与随机响应面方法的深度学习超参数优化算法[J]. 高技术通讯, 2019, 29(12): 1165-1174. |
| SUN Y Z, LU Z H. A hyperparameter tuning algorithm based on extreme learning machine and stochastic response surface method for deep learning[J]. Chinese High Technology Letters, 2019, 29(12): 1165-1174 (in Chinese). | |
| [52] | 张科施, 凌圣博, 韩忠华. 跨声速运输机机翼气动/结构优化平台AeroStruct的发展及应用[J]. 航空科学技术, 2022, 33(4): 47-56. |
| ZHANG K S, LING S B, HAN Z H. Development and application of AeroStruct, an aerodynamic/structural optimization platform for transonic transport aircraft wings[J]. Aeronautical Science & Technology, 2022, 33(4): 47-56 (in Chinese). | |
| [53] | FENG C, CHEN S S, YUAN W, et al. A wide-speed-range aerodynamic configuration by adopting wave-riding-strake wing[J]. Acta Astronautica, 2023, 202: 442-452. |
| [54] | UENO A, SUZUKI K. CFD-based shape optimization of hypersonic vehicles considering transonic aerodynamic performance[C]∥Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
| [55] | UENO A, SUZUKI K. Two-dimensional shape optimization of hypersonic vehicles considering transonic aerodynamic performance[J]. Transactions of the Japan Society for Aeronautical & Spaceences, 2009, 52(176): 65-73. |
| [56] | 张旭辉, 解春雷, 刘思佳, 等. 智能变形飞行器发展需求及难点分析[J]. 航空学报, 2023, 44(21): 529302. |
| ZHANG X H, XIE C L, LIU S J, et al. Development needs and difficulty analysis for smart morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 529302 (in Chinese). | |
| [57] | ANDERSEN G, COWAN D L, PIATAK D J. Aeroelastic modeling, analysis and testing of a morphing wing structure[C]∥Proceedings of the 48th AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
| [58] | FLANAGAN J S, STRUTZENBERG R C, MYERS R, et al. Development and flight testing of a morphing aircraft, the NextGen[C]∥Proceedings of the 48th AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
| [59] | KUEHME D, ALLEY N R, PHILLIPS C, et al. Flight test evaluation and system identification of the area-I prototype-technology-evaluation research aircraft (PTERA)[C]∥Proceedings of AIAA Flight Testing Conference. Reston: AIAA, 2014. |
| [60] | ORTIZ P, ALLEY N. Spanwise adaptive wing-PTERA flight test[C]∥Proceedings of AIAA Aviation Forum. Reston: AIAA, 2018. |
| [61] | 谷小军, 周炳楠, 王文龙, 等. 形状记忆合金驱动的可变翼梢小翼设计与验证[J]. 机械工程学报, 2022, 58(17): 49-57. |
| GU X J, ZHOU B N, WANG W L, et al. Design and assessment of variable winglet driven by shape memory alloy[J]. Journal of Mechanical Engineering, 2022, 58(17): 49-57 (in Chinese). | |
| [62] | 田鑫. 基于3-RPS并联机构的自适应机翼方法实现及其测控系统研究[D]. 南京: 南京航空航天大学, 2011: 19-25. |
| TIAN X. Research on morphing wing with 3-RPS mechanism and it’s measurement & control system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 19-25 (in Chinese). | |
| [63] | ZHAO J L, YAN S Z, DENG L R, et al. Design and analysis of biomimetic nose cone for morphing of aerospace vehicle[J]. Journal of Bionic Engineering, 2017, 14(2): 317-326. |
| [64] | 孙健. 弹道修正引信仿生变体结构设计及气动性能研究[D]. 长春: 吉林大学, 2023: 18-19. |
| SUN J. Design and aerodynamic performance study of bionic variant of ballistic correction fuse[D]. Changchun: Jilin University, 2023: 18-19 (in Chinese). | |
| [65] | 果晓东, 李志伟, 赵文祥, 等. 基于记忆合金丝驱动的飞行器变形头锥设计与仿真分析[C]∥北京力学会第二十三届学术年会. 2017: 393-397. |
| GUO X D, LI Z W, ZHAO W X, et al. Design and simulation analysis of deformed head cone based on memory alloy wire actuation for flying vehicles[C]∥Proceedings of the 23rd Annual Meeting of Beijing Society of Theoretical and Applied Mechanics. 2017: 393-397 (in Chinese). | |
| [66] | 果晓东, 祝玉兰, 李志伟, 等. 记忆合金丝驱动的飞行器变形头锥强度校核与应力分析[C]∥北京力学会第二十三届学术年会. 2017: 584-588. |
| GUO X D, ZHU Y L, LI Z W, et al. Strength calibration and stress analysis of deformed head cone driven by memory alloy wire for flying vehicles[C]∥Proceedings of the 23rd Annual Meeting of Beijing Society of Theoretical and Applied Mechanics. 2017: 584-588 (in Chinese). | |
| [67] | DAI P, YAN B, HUANG W, et al. Design and aerodynamic performance analysis of a variable-sweep-wing morphing waverider[J]. Aerospace Science and Technology, 2020, 98: 105703. |
| [68] | 陈树生, 张兆康, 李金平, 等. 一种宽速域乘波三角翼气动布局设计[J]. 航空学报, 2023, 44(23): 128441. |
| CHEN S S, ZHANG Z K, LI J P, et al. Wide-speed aerodynamic layout adopting waverider-delta wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 128441 (in Chinese). | |
| [69] | TAKAMA Y. Practical waverider with outer wings for the improvement of low-speed aerodynamic performance[C]∥Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
| [70] | 刘文, 郭帅旗, 刘洋, 等. 乘波体设计与优化研究进展——从高超声速至宽速域[J]. 力学学报, 2024, 56(6): 1655-1677. |
| LIU W, GUO S Q, LIU Y, et al. Advances in design and optimization of waverider—from hypersonic to wide-speed range[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1655-1677 (in Chinese). | |
| [71] | CASTRICHINI A, SIDDARAMAIAH V H, CALDERON D, et al. Preliminary investigation of use of flexible folding wing tips for static and dynamic load alleviation[J]. The Aeronautical Journal, 2017, 121(1235): 73-94. |
| [72] | DUSSART G X, YUSUF S, LONE M. Effect of wingtip morphing on the roll mode of a flexible aircraft[C]∥ Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018. |
| [73] | 聂瑞. 变体机翼结构关键技术研究[D]. 南京: 南京航空航天大学, 2018: 94-100. |
| NIE R. Research on key technologies of morphing wing structures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 94-100 (in Chinese). | |
| [74] | 陆宇平, 何真, 吕毅. 变体飞行器技术[J]. 航空制造技术, 2008(22): 26-29. |
| LU Y P, HE Z, LV Y. Morphing aircraft technology[J]. Aeronautical Manufacturing Technology, 2008(22): 26-29 (in Chinese). | |
| [75] | 彭悟宇. 高超声速飞行器气动变形方案设计与外形优化方法研究[D]. 长沙: 国防科技大学, 2019: 22-29. |
| PENG W Y. Research on aerodynamic morphing scheme design and shape optimization method of hypersonic vehicle[D]. Changsha: National University of Defense Technology, 2019: 22-29 (in Chinese). | |
| [76] | 陈钱, 白鹏, 李锋. 可变形飞行器机翼两种变后掠方式及其气动特性机理[J]. 空气动力学学报, 2012, 30(5): 658-663. |
| CHEN Q, BAI P, LI F. Morphing aircraft wing variable-sweep: two practical methods and their aerodynamic characteristics[J]. Acta Aerodynamica Sinica, 2012, 30(5): 658-663 (in Chinese). | |
| [77] | 陈钱, 白鹏, 尹维龙, 等. 飞机外翼段大尺度剪切式变后掠设计与分析[J]. 空气动力学学报, 2013, 31(1): 40-46. |
| CHEN Q, BAI P, YIN W L, et al. Design and analysis of a variable-sweep morphing aircraft with outboard wing section large-scale shearing[J]. Acta Aerodynamica Sinica, 2013, 31(1): 40-46 (in Chinese). | |
| [78] | 王云飞, 肖洪, 杨广, 等. 平行连杆式变形翼结构设计及分布式驱动配置[J]. 哈尔滨工业大学学报, 2022, 54(1): 65-72. |
| WANG Y F, XIAO H, YANG G, et al. Structure design and distributed actuators configuration of a parallel linkage morphing wing[J]. Journal of Harbin Institute of Technology, 2022, 54(1): 65-72 (in Chinese). | |
| [79] | 李辉. 剪切式变后掠翼结构设计及变形控制研究[D]. 南京: 南京航空航天大学, 2022: 17-19. |
| LI H. Research on structural design and deformation control of shear variable swept wing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022: 17-19 (in Chinese). | |
| [80] | 封铮, 李辉, 徐志伟. 剪切变后掠角变体机翼结构及柔性蒙皮设计研究[J]. 航空科学技术, 2024, 35(5): 93-100. |
| FENG Z, LI H, XU Z W. Research on shear variable sweep wing structure and flexible skin design[J]. Aeronautical Science & Technology, 2024, 35(5): 93-100 (in Chinese). | |
| [81] | ERBIL M A, PRIOR S D, KARAMANOGLU M, et al. Reconfigurable unmanned aerial vehicles[C]∥Proceedings of the 2009 International Conference on Manufacturing and Engineering Systems. 2009: 392-396. |
| [82] | HUI Z, ZHANG Y, CHEN G. Aerodynamic performance investigation on a morphing unmanned aerial vehicle with bio-inspired discrete wing structures[J]. Aerospace Science and Technology, 2019, 95: 105419. |
| [83] | DI LUCA M, MINTCHEV S, HEITZ G, et al. Bioinspired morphing wings for extended flight envelope and roll control of small drones[J]. Interface Focus, 2017, 7(1): 20160092. |
| [84] | AJANIC E, FEROSKHAN M, MINTCHEV S, et al. Bioinspired wing and tail morphing extends drone flight capabilities[J]. Science Robotics, 2020, 5(47): eabc2897. |
| [85] | 刘瑜, 吕凡熹, 周进. XB-70飞行器折叠机翼总体性能分析[J]. 航空科学技术, 2022, 33(12): 47-53. |
| LIU Y, LV F X, ZHOU J. Overall performance analysis on XB-70 folding wingtip system[J]. Aeronautical Science & Technology, 2022, 33(12): 47-53 (in Chinese). | |
| [86] | IVANCO T G, SCOTT R C, LOVE M, et al. Validation of the lockheed martin morphing concept with wind tunnel testing[C]∥Proceedings of the 48th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
| [87] | SIMPSON A D. Design and evaluation of inflatable wings for UAVs[D]. Lexington: University of Kentucky, 2008: 18-23. |
| [88] | 袁亚, 刘君, 余家泉, 等. 高速折叠翼飞行器气动布局优化设计技术研究[J]. 北京航空航天大学学报, 2024, 50(11): 3410-3416. |
| YUAN Y, LIU J, YU J Q, et al. Research on aerodynamic layout optimization technology of high-speed folding vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(11): 3410-3416 (in Chinese). | |
| [89] | WEISSHAAR T A. Morphing aircraft technology - new shapes for aircraft design: RTO-MP-AVT-141[R]. Indiana: Purdue University, 2006. |
| [90] | SNEED R C, SMITH R R, CASH M F, et al. Smart-material based hydraulic pump system for actuation of a morphing wing[C]∥Proceedings of the 48th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
| [91] | SANTOS P, SOUSA J, GAMBOA P. Variable-span wing development for improved flight performance[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(8): 961-978. |
| [92] | MESTRINHO J, GAMBOA P, SANTOS P. Design optimization of a variable-span morphing wing for a small UAV[M]. 2011: 252-271. |
| [93] | REED J L, HEMMELGARN C D, PELLEY B M, et al. Adaptive wing structures[J]. International Society for Optics and Photonics, 2005, 5762: 132-142. |
| [94] | MOORE M, FREI D. X-29 forward swept wing aerodynamic overview[C]∥Proceedings of Applied Aerodynamics Conference. Reston: AIAA, 1983. |
| [95] | SWAIM R L, NEWMAN B. Classical flight dynamics of a variable forward-sweep-wing aircraft[J]. Journal of Guidance Control and Dynamics, 1986, 9(3): 352-356. |
| [96] | 刘文法, 王旭, 米康. 一种新的变前掠翼无人机气动布局[J]. 航空学报, 2009, 30(5): 832-836. |
| LIU W F, WANG X, MI K. A new aerodynamic configuration of UAV with variable forward-swept wing[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 832-836 (in Chinese). | |
| [97] | 叶露. 变掠翼无尾飞机气动布局设计研究[J]. 飞行力学, 2019, 37(2): 36-40. |
| YE L. Research of variable forward-sweep wing tailless aircraft aerodynamic configuration design[J]. Flight Dynamics, 2019, 37(2): 36-40 (in Chinese). | |
| [98] | MOOSAVIAN A, XI F, HASHEMI S M. Design and motion control of fully variable morphing wings[J]. Journal of Aircraft, 2013, 50(4): 1189-1201. |
| [99] | FINISTAURI A D. Conceptual design of a modular morphing wing[D]. Toronto: Toronto Metropolitan University, 2013: 25-30. |
| [100] | 张蒂. 基于四面体桁架的飞行器变形骨架研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 51-55. |
| ZHANG D. Research on aircraft deformation skeleton based on tetrahedral truss[D]. Harbin: Harbin Institute of Technology, 2018: 51-55 (in Chinese). | |
| [101] | MORTON D, XU A, MATUTE A, et al. Autonomous material composite morphing wing[J]. Journal of Composite Materials, 2023, 57(4): 711-720. |
| [102] | ZHANG Y L, ZHAO J L, CHEN W H, et al. Biomimetic skeleton structure of morphing nose cone for aerospace vehicle inspired by variable geometry mechanism of honeybee abdomen[J]. Aerospace Science and Technology, 2019, 92: 405-416. |
| [103] | ERICSSON L E, GUENTHER R A, STAKE W R, et al. Combined effects of nose bluntness and cone angle on unsteady aerodynamics[J]. AIAA Journal, 1974, 12: 729-732. |
| [104] | DEEPAK N R, RAY T, BOYCE R R. Evolutionary algorithm shape optimization of a hypersonic flight experiment nose cone[J]. Journal of Spacecraft and Rockets, 2008, 45: 428-437. |
| [105] | LI J L, WU J N, YAN S Z. Conceptual design of deployment structure of morphing nose cone[J]. Advances in Mechanical Engineering, 2013, 5: 590957. |
| [106] | 果晓东, 李君兰, 陈炜铧, 等. 基于伞式导杆机构的变体头锥设计与仿真[J]. 光学精密工程, 2018, 26(2): 336-343. |
| GUO X D, LI J L, CHEN W H, et al. Design and simulation of morphing nose cone for umbrella guide-rod mechanism[J]. Optics and Precision Engineering, 2018, 26(2): 336-343 (in Chinese). | |
| [107] | ZHAO J L, WU J N, YAN S Z. Movement analysis of flexion and extension of honeybee abdomen based on an adaptive segmented structure[J]. Journal of Insect Science, 2015, 15(1): 109. |
| [108] | ZHAO J L, YAN S Z, WU J N. Critical structure for telescopic movement of honey bee (insecta: apidae) abdomen: folded intersegmental membrane[J]. Journal of Insect Science, 2016, 16(1): 79. |
| [109] | 尹丹妮, 谷勇霞, 张玉玲. 仿蜜蜂腹部变体机构设计及运动分析[J]. 机械科学与技术, 2023, 42(8): 1200-1206. |
| YIN D N, GU Y X, ZHANG Y L. Designing honeybee abdomen’s morphing mechanism and its kinematic analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(8): 1200-1206 (in Chinese). | |
| [110] | 尹丹妮, 张玉玲, 阎绍泽, 等. 基于并联机构的变体头锥设计及运动分析[C]∥2023智能制造与机械动力学学术大会论文集. 2023: 28. |
| YIN D N, ZHANG Y L, YAN S Z, et al. Morphing nose cone design and motion analysis based on parallel mechanism[C]∥Proceedings of the 2023 Academic Conference on Intelligent Manufacturing and Mechanical Dynamics. 2023: 28 (in Chinese). | |
| [111] | 田静怡, 张玉玲, 尹丹妮, 等. 变体飞行器头锥的运动控制性能分析[J]. 振动测试与诊断, 2024, 44(2): 345-352, 413. |
| TIAN J Y, ZHANG Y L, YIN D N, et al. Motion control performance analysis of nose cone of variant aircraft[J]. Journal of Vibration, Measurement & Diagnosis, 2024, 44(2): 345-352, 413 (in Chinese). | |
| [112] | 郝亮. 卫星舱组件分配与布置的集成布局方法[D]. 南京: 南京信息工程大学, 2016: 17-25. |
| HAO L. Integrated layout methods for satellite module component distribution and layout[D]. Nanjing: Nanjing University of Information Science & Technology, 2016: 17-25 (in Chinese). | |
| [113] | 黎自强, 滕弘飞. 一种新的凸多边形不干涉算法[J]. 计算机工程与应用, 2008(1): 11-13. |
| LI Z Q, TENG H F. New non-interference approach for convex polygons[J]. Computer Engineering and Applications, 2008(1): 11-13 (in Chinese). | |
| [114] | ZHANG W H, ZHANG Q. Finite-circle method for component approximation and packing design optimization[J]. Engineering Optimization, 2009, 41(10): 971-987. |
| [115] | ZHU J H, ZHANG W H, XIA L, et al. Optimal packing configuration design with finite-circle method[J]. Journal of Intelligent & Robotic Systems, 2012, 67(3-4): 185-199. |
| [116] | 朱继宏, 郭文杰, 张卫红. 多组件结构系统的整体式拓扑布局优化设计进展[C]∥中国力学大会-2015论文摘要集. 2015: 339. |
| ZHU J H, GUO W J, ZHANG W H. Advances in Optimized Design of Integral Topological Layout for multi-Component Structured Systems[C]∥Proceedings of the 2015 Chinese congress of theoretical and applied mechanics. 2015: 339 (in Chinese). | |
| [117] | 朱继宏, 张卫红. 智能变体结构的整体优化设计[C]∥2018年全国固体力学学术会议摘要集. 2018: 556. |
| ZHU J H, ZHANG W H. Integrated optimized design of smart variant structures[C]∥Proceedings of the 2018 National Conference on Solid Mechanics. 2018: 556 (in Chinese). | |
| [118] | 郭文杰, 朱继宏, 罗利龙, 等. 考虑组件保形约束的多组件结构系统布局优化[J]. 航空学报, 2022, 43(5): 225225. |
| GUO W J, ZHU J H, LUO L L, et al. Integrated layout and topology optimization of multi-component structural systems considering component shape-preserving design constraints[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 225225 (in Chinese). | |
| [119] | 王巍, 王浩, 周艾, 等. 变弯度机翼外形与拓扑分步优化设计[J]. 航空学报, 2024, 45(18): 129990. |
| WANG W, WANG H, ZHOU A, et al. Stepwise optimal design for shape and topology of variable camber wing[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 129990 (in Chinese). | |
| [120] | 齐鹏飞. 折叠翼变形结构的拓扑优化设计方法[D]. 哈尔滨: 哈尔滨工业大学, 2021: 21-30. |
| QI P F. Topology optimization design method of folding wing deformed structure[D]. Harbin: Harbin Institute of Technology, 2021: 21-30 (in Chinese). | |
| [121] | GU X J, YANG K K, WU M Q, et al. Integrated optimization design of smart morphing wing for accurate shape control[J]. Chinese Journal of Aeronautics, 2021, 34(1): 135-147. |
| [122] | HU J, WALLIN M, RISTINMAA M, et al. Integrated multi-material and multi-scale optimization of compliant structure with embedded movable piezoelectric actuators[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 421: 116786. |
| [123] | BENSOUSSAN A, LIONS J L, PAPANICOLAOU G C. Asymptotic analysis for periodic structures-studies in mathematics and its applications[J]. Journal of Applied Mechanics, 1978, 5(2): 233-247. |
| [124] | GUEDES J, KIKUCHI N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 83(2): 143-198. |
| [125] | ZHANG W H, WANG F W, DAI G M, et al. Topology optimal design of material microstructures using strain energy-based method[J]. Chinese Journal of Aeronautics, 2007, 20(4): 320-326. |
| [126] | 王凤稳. 复合材料等效性能计算及优化设计[D]. 西安: 西北工业大学, 2007: 7-12. |
| WANG F W. Calculation of the effective properties and topology optimization of composite materials[D]. Xi’an: Northwestern Polytechnical University, 2007: 7-12 (in Chinese). | |
| [127] | 王创. 基于轻质点阵的多尺度结构协同优化设计方法[D]. 西安: 西北工业大学, 2021:85-95. |
| WANG C. Concurrent design and optimization for multi-scale structures with lattice materials[D]. Xi’an: Northwestern Polytechnical University, 2021: 85-95 (in Chinese). | |
| [128] | FEYEL F. Multiscale FE2 elastoviscoplastic analysis of composite structures[J]. Computational Materials Science, 1999, 16(1): 344-354. |
| [129] | TAN V B C, RAJU K, LEE H P. Direct FE2 for concurrent multilevel modelling of heterogeneous structures[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112694. |
| [130] | ZHAO A, LI P, CUI Y H, et al. Multiscale topology optimization with direct FE2[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 419: 116662. |
| [131] | RAJU K, ZHI J, SU Z C, et al. Analysis of nonlinear shear and damage behaviour of angle-ply laminates with direct FE2[J]. Composites Science and Technology, 2021, 216: 109050. |
| [132] | ZHI J, POH L H, T-E TAY, et al. Direct FE2 modeling of heterogeneous materials with a micromorphic computational homogenization framework[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114837. |
| [133] | XU J H, LI P, POH L H, et al. Direct FE2 for concurrent multilevel modeling of heterogeneous thin plate structures[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 392: 114658. |
| [134] | YEOH K M, POH L H, T-E TAY, et al. Multiscale modelling of sandwich structured composites using direct FE2[J]. Composites Science and Technology, 2023, 239: 110066. |
| [135] | OTERO F, OLLER S, MARTINEZ X. Multiscale computational homogenization: review and proposal of a new enhanced-first-order method[J]. Archives of Computational Methods in Engineering, 2016, 25: 479-505. |
| [136] | RAJU K, T-E TAY, TAN V B C. A review of the FE2 method for composites[J]. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2021, 4(1): 1-24. |
| [137] | YU W B. A unified theory for constitutive modeling of composites[J]. Journal of Mechanics of Materials and Structures, 2016, 11: 379-411. |
| [138] | LIU X, YU W B. A novel approach to analyze beam-like composite structures using mechanics of structure genome[J]. Advances in Engineering Software, 2016, 100: 238-251. |
| [139] | LIU N, YU W B. Mechanics of structure genome-based buckling analysis of sandwich structures[J]. Thin-Walled Structures, 2021, 169: 108364. |
| [140] | 邵校. 短纤维增强复合材料细观建模与多尺度性能分析[D]. 大连: 大连理工大学, 2020: 13-14. |
| SHAO X. The micro-modeling and multi-scale performance analysis on the short fiber reinforced composites[D]. Dalian: Dalian University of Technology, 2020: 13-14 (in Chinese). | |
| [141] | 张卫红, 周涵, 李韶英, 等. 航天高性能薄壁构件的材料-结构一体化设计综述[J]. 航空学报, 2023, 44(9): 627428. |
| ZHANG W H, ZHOU H, LI S Y, et al. Material-structure integrated design for high-performance aerospace thin-walled component[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 627428 (in Chinese). | |
| [142] | WANG C, ZHU J H, WU M Q, et al. Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components[J]. Chinese Journal of Aeronautics, 2021, 34(5): 386-398. |
| [143] | WALTON D, MOZTARZADEH H. Design and development of an additive manufactured component by topology optimisation[J]. Procedia CIRP, 2017, 60: 205-210. |
| [144] | ZHANG W S, LI D, ZHANG J, et al. Minimum length scale control in structural topology optimization based on the moving morphable components (MMC) approach[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 311: 327-355. |
| [145] | ZHOU L, ZHANG W H. Topology optimization method with elimination of enclosed voids[J]. Structural and Multidisciplinary Optimization, 2019, 60(1): 117-136. |
| [146] | ZHOU Y, LU H, REN Q R, et al. Generation of a tree-like support structure for fused deposition modelling based on the L-system and an octree[J]. Graphical Models, 2019, 101: 8-16. |
| [147] | SALMORIA G V, AHRENS C H, FREDEL M, et al. Stereolithography somos 7110 resin: mechanical behavior and fractography of parts post-cured by different methods[J]. Polymer Testing, 2005, 24(2): 157-162. |
| [148] | SIMONELLI M, TSE Y Y, TUCK C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V[J]. Materials Science and Engineering: A, 2014, 616: 1-11. |
| [149] | YADOLLAHI A, SHAMSAEI N, THOMPSON S M, et al. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel[J]. International Journal of Fatigue, 2017, 94: 218-235. |
| [150] | YIN S, JENKINS R, YAN X C, et al. Microstructure and mechanical anisotropy of additively manufactured cold spray copper deposits[J]. Materials Science and Engineering: A, 2018, 734: 67-76. |
| [151] | ZHU Y Y, TIAN X J, LI J, et al. The anisotropy of laser melting deposition additive manufacturing Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Materials & Design, 2015, 67: 538-542. |
| [152] | THRIMURTHULU K, PANDEY P M, VENKATA REDDY N. Optimum part deposition orientation in fused deposition modeling[J]. International Journal of Machine Tools and Manufacture, 2004, 44(6): 585-594. |
| [153] | YASA E, KRUTH J P, DECKERS J. Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting[J]. CIRP Annals, 2011, 60(1): 263-266. |
| [154] | YANG K K, ZHU J H, WANG C, et al. Experimental validation of 3D printed material behaviors and their influence on the structural topology design[J]. Computational Mechanics, 2018, 61(5): 581-598. |
| [155] | EDWARDS P, RAMULU M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering: A, 2014, 598: 327-337. |
| [156] | LEUDERS S, LIENEKE T, LAMMERS S, et al. On the fatigue properties of metals manufactured by selective laser melting-the role of ductility[J]. Journal of Materials Research, 2014, 29(17): 1911-1919. |
| [157] | YADOLLAHI A, SHAMSAEI N, THOMPSON S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316 L stainless steel[J]. Materials Science and Engineering: A, 2015, 644: 171-183. |
| [158] | TZONG G, JACOBS R, LIGUORE S. Air vehicle integration and technology research (aviatr) task order 0015: predictive capability for hypersonic structural response and life prediction: phase 1-identification of knowledge gaps[R]. Maryland: Lockheed Martin Aeronautics Company, 2010. |
| [159] | 李锋. 疏导式热防护[M]. 北京: 中国宇航出版社, 2017: 15-20. |
| LI F. Dredging thermal protection[M]. Beijing: China Astronautic Publishing House, 2017: 15-20 (in Chinese). | |
| [160] | BOUCHEZ M, BEYER S. Ptah-socar fuel-cooled composite materials structure[C]∥Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2008. |
| [161] | 向树红, 张敏捷, 童靖宇, 等. 高超声速飞行器主动式气膜冷却防热技术研究[J]. 装备环境工程, 2015, 12(3): 1-7. |
| XIANG S H, ZHANG M J, TONG J Y, et al. Research on active film cooling and heat-proof scheme for hypersonic vehicles[J]. Equipment Environmental Engineering, 2015, 12(3): 1-7 (in Chinese). | |
| [162] | GLASS D E, DILLEY A C, KELLY H. Numerical analysis of convection/transpiration cooling[C]∥Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. |
| [163] | 王天琦, 魏程, 于柏峰, 等. 航天用碳/碳复合材料研究进展[J]. 纤维复合材料, 2024, 41(2): 112-125. |
| WANG T Q, WEI C, YU B F, et al. Research progress in C/C composites for aerospace[J]. Fiber Composites, 2024, 41(2): 112-125 (in Chinese). | |
| [164] | 王首豪. ZrC改性C/C- SiC复合材料高温性能及影响机理研究[D]. 大连: 大连理工大学, 2020: 5-18. |
| WANG S H. High-temperature performance and influence mechanisms of ZrC-modified C/C-SiC composites[D]. Dalian: Dalian University of Technology, 2020:5-18 (in Chinese). | |
| [165] | 杨晓辉, 李克智, 白龙腾, 等. 不同热解碳界面层厚度C/ZrC-SiC复合材料烧蚀性能及其机理[J]. 材料研究学报, 2022, 36(7): 489-499. |
| YANG X H, LI K Z, BAI L T, et al. Ablation properties and mechanisms of C/ZrC-SiC composites with pyrolytic carbon interlayer of different thickness[J]. Chinese Journal of Materials Research, 2022, 36(7): 489-499 (in Chinese). | |
| [166] | 李成伟, 庄晟逸, 向文超, 等. 航天热防护用树脂基复合材料研制的前沿进展[J]. 中国科学:化学, 2024, 54(11): 2167-2182. |
| LI C W, ZHUANG C Y, XIANG W C, et al. Frontier development of resin-based composites for aerospace thermal protection[J]. SCIENTIA SINICA Chimica, 2024, 54(11): 2167-2182 (in Chinese). | |
| [167] | GORTON M P, SHIDELER J L, WEBB G L. Static and aerothermal tests of a superalloy honeycomb prepackaged thermal protection system[J]. NASA STI/Recon Technical Report N, 1993, 93: 24096. |
| [168] | 黄杰. 高超声速飞行器热防护系统综合研究[D]. 南京: 南京航空航天大学, 2019: 26-32. |
| HUANG J. Comprehensive investigations on thermal protection system of hypersonic vehicles[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 26-32 (in Chinese). | |
| [169] | 刘双, 张博明, 解维华. 可重复使用航天器金属热防护系统的结构优化进展[J]. 航天制造技术, 2007(3): 43-48. |
| LIU S, ZHANG B M, XIE W H. Advances in structural optimization of metallic thermal protection systems for reusable spacecraft[J]. Aerospace Manufacturing Technology, 2007(3): 43-48 (in Chinese). | |
| [170] | BUFFENOIR F, ZEPPA C, PICHON T, et al. Development and flight qualification of the C-SiC thermal protection systems for the IXV[J]. Acta Astronautica, 2016, 124: 85-89. |
| [171] | PICHON T, BARRETEAU R, SOYRIS P, et al. CMC thermal protection system for future reusable launch vehicles: generic shingle technological maturation and tests[J]. Acta Astronautica, 2009, 65(1): 165-176. |
| [172] | BAPANAPALLI S, MARTINEZ O, GOGU C, et al. (Student paper) Analysis and design of corrugated-core sandwich panels for thermal protection systems of space vehicles[C]∥Proceedings of the 47th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006. |
| [173] | ZHAO S Y, LI J J, HE X D. Comparison of thermo-structural responses for integrated thermal protection panels with different corrugated core configurations[J]. Journal of Harbin Institute of Technology, 2013, 20(6): 21-28. |
| [174] | BLOSSER M L, DARYABEIGI K, BIRD R K, et al. Transient thermal testing and analysis of a thermally insulating structural sandwich panel[R]. 2015. |
| [175] | ZHENG L M, WU D F, PAN B, et al. Experimental investigation and numerical simulation of heat-transfer properties of metallic honeycomb core structure up to 900 °C[J]. Applied Thermal Engineering, 2013, 60(1): 379-386. |
| [176] | PAN B, YU L P, WU D F. Thermo-mechanical response of superalloy honeycomb sandwich panels subjected to non-steady thermal loading[J]. Materials & Design, 2015, 88: 528-536. |
| [177] | WU D F, ZHENG L M, PAN B, et al. Thermal protection performance of metallic honeycomb core panel structures in non-steady thermal environments[J]. Experimental Heat Transfer, 2016, 29(1-3): 53-77. |
| [178] | WANG X W, WEI K, WANG K Y, et al. Effective thermal conductivity and heat transfer characteristics for a series of lightweight lattice core sandwich panels[J]. Applied Thermal Engineering, 2020, 173: 115205. |
| [179] | WEI K, CHENG X M, HE R J, et al. Heat transfer mechanism of the C/SiC ceramics pyramidal lattice composites[J]. Composites Part B: Engineering, 2014, 63: 8-14. |
| [180] | YAN H B, YANG X H, LU T J, et al. Convective heat transfer in a lightweight multifunctional sandwich panel with X-type metallic lattice core[J]. Applied Thermal Engineering, 2017, 127: 1293-1304. |
| [181] | ZHANG X L, WANG Y Q, WANG Y H, et al. Preliminary study on the thermal insulation of a multilayer passive thermal protection system with carbon-phenolic composites in a combustion chamber[J]. Case Studies in Thermal Engineering, 2022, 35: 102120. |
| [182] | CUI W, SI T Y, LI X Y, et al. Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2022, 169: 112912. |
| [183] | CAO C Y, WANG R X, XING X D, et al. Performance improvement of integrated thermal protection system using shaped-stabilized composite phase change material[J]. Applied Thermal Engineering, 2020, 164: 114529. |
| [184] | 曹晨宇, 王睿星, 邢晓冬, 等. 含相变材料热防护结构一体化设计与试验[J]. 宇航学报, 2019, 40(3): 352-361. |
| CAO C Y, WANG R X, XING X D, et al. Design and experimental investigation of integrated thermal protection structure containing phase change material layer[J]. Journal of Astronautics, 2019, 40(3): 352-361 (in Chinese). | |
| [185] | 周涵. 多层热防护结构跨尺度协同优化设计理论与方法研究[D]. 西安: 西北工业大学, 2023: 134-136. |
| ZHOU H. Research on cross-scale collaborative optimization design method for multi-layer thermal protection structure[D]. Xi’an: Northwestern Polytechnical University, 2023: 134-136 (in Chinese). | |
| [186] | 肖雪峰. 发汗冷却传热特性及边界层流动规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 57-67. |
| XIAO X F. Study on heat transfer and boundary layer flow of transpiration cooling[D]. Harbin: Harbin Institute of Technology, 2019: 57-67 (in Chinese). | |
| [187] | 陈忠灿, 张凯, 李枫, 等. 发汗冷却技术在飞行器上的应用及展望[J]. 清华大学学报(自然科学版), 2024, 64(2): 318-336. |
| CHEN Z C, ZHANG K, LI F, et al. Application and research progress of transpiration cooling technology in flight vehicles[J]. Journal of Tsinghua University (Science and Technology), 2024 64(2): 318-336 (in Chinese). | |
| [188] | XING K Q, TAO Y-X, HAO Y L. Performance evaluation of liquid flow with PCM particles in microchannels[J]. Journal of Heat Transfer, 2005, 127(8): 931-40. |
| [189] | FOREEST A V, SIPPEL M, GÜLHAN A, et al. Transpiration cooling using liquid water[J]. Journal of Thermophysics and Heat Transfer, 2007, 23: 693-702. |
| [190] | REIMER T, KUHN M, GÜLHAN A, et al. Transpiration cooling tests of porous CMC in hypersonic flow[C]∥Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
| [191] | HUANG G, LIAO Z Y, XU R N, et al. Self-pumping transpiration cooling with a protective porous armor[J]. Applied Thermal Engineering, 2020, 164: 114485. |
| [192] | WU N, WANG J H, HE F, et al. Optimization transpiration cooling of nose cone with non-uniform permeability[J]. International Journal of Heat and Mass Transfer, 2018, 127: 882-891. |
| [193] | 伍楠. 发散冷却关键问题的实验和数值研究[D]. 合肥: 中国科学技术大学, 2019: 27-35. |
| WU N. Experimental and numerical investigations on the key problems of transpiration cooling[D]. Hefei: University of Science and Technology of China, 2019: 27-35 (in Chinese). | |
| [194] | HUANG G, ZHU Y H, LIAO Z Y, et al. Transpiration cooling with bio-inspired structured surfaces[J]. Bioinspiration & Biomimetics, 2020, 15(3): 036016. |
| [195] | 甘晓. 打造新一代空天飞行器研发重器[EB/OL]. 中国科学报, (2023-12-25)[2024-12-19]. |
| GAN X. Developing key equipment for the next generation of aerospace vehicles[EB/OL]. China Science Daily, (2023-12-25)[2024-12-19] (in Chinese). |
| [1] | Shu ZHANG, Kuo TIAN, Cong GUO. Complex space reduction and optimization method based on multiple fidelity model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730583-730583. |
| [2] | Liang MENG, Jinyuan YANG, Zhiwei YANG, Tong GAO, Hongquan LIU, Weihong ZHANG. Buckling⁃resisting optimization design of typical aircraft panel and test validation [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529679-529679. |
| [3] | Li CHEN, Xiaoyun ZENG, Wen HUANG, Jianfei ZHANG. Lattice structure optimization design under harmonic base acceleration excitations [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529704-529704. |
| [4] | Yuanling CHEN, Jiawen CHEN, Yueyang PAN, Mingyang YAN. Optimization of turbocharging system for aviation piston pump based on entropy production theory [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 429015-429015. |
| [5] | Xiaoqian CHEN, Yong ZHAO, Senlin HUO, Zeyu ZHANG, Bingxiao DU. A review of topology optimization design methods for multi-scale structures [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528863-528863. |
| [6] | BAI Junqiang, LEI Ruiwu, YANG Tihao, WANG Hui, HE Xiaolong, QIU Yasong. Progress of adjoint-based aerodynamic optimization design for large civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522642-522642. |
| [7] | ZHOU Zhu, HUANG Jiangtao, GAO Zhenghong, HUANG Yong, CHEN Zuobin, YU Jing. Challenges and prospects of numerical optimization design for large civil aircraft aerodynamic shape [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522370-522370. |
| [8] | ZHANG Lifeng, YAO Weixing, ZOU Jun. Equivalent multi-case optimization architecture for modular aircraft structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(3): 834-839. |
| [9] | JU Long, BAI Junqiang, SUN Zhiwei, CHEN Song, LI Quan. Integrated Aero-structure Design of Circulation Distribution for Commercial Aircraft Wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(12): 2725-2732. |
| [10] | LUO Yangjun, GAO Zongzhan, YUE Zhufeng, WU Ziyan. Reliability-based Optimization Design for Structures with Stochastic and Bounded Parameter Uncertainties [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(6): 1058-1066. |
| [11] | WANG Xichun;SU Hua;ZONG Zhaoke. Structural Optimization and Dynamic Simulation of Circumferential Convergent Hydrodynamic Finger Seal [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(2): 360-367. |
| [12] | FAN Shang chun;LI Ming ming;SONG Zhi sheng . OPTIMIZATION OF THE BOUNDARY STRUCTURAL PARAMETERS OF A SILICON RESONANT BEAM PRESSURE MICROSENSOR [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1999, 20(4): 75-77. |
| [13] | Xia Renwei;Chen Shaojun;Huang Hai. QUASI ANALYTIC METHOD FOR STRUCTURAL OPTIMIZATION [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1997, 18(3): 262-266. |
| [14] | Chen Shaojun;Xia Renwei. A NEW TWO POINT APPROXIMATION FUNCTION FOR STRUCTURAL OPTIMIZATION [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1996, 17(6): 102-106. |
| [15] | Huang Chuanqi . OPTIMUM DESIGN OF COMPOSITE LAMINATES WITH STIFFNESS REQUIREMENTS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1996, 17(4): 465-469. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

