Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (9): 529085-529085.doi: 10.7527/S1000-6893.2023.29085
• Reviews • Previous Articles Next Articles
Received:
2023-05-31
Revised:
2023-06-19
Accepted:
2023-09-11
Online:
2024-05-15
Published:
2023-10-11
Contact:
Jinghui DENG
E-mail:dengjh001@avic.com
CLC Number:
Jinghui DENG. Key technologies and development for high-speed helicopters[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529085-529085.
1 | 邓景辉. 直升机技术发展与展望[J]. 航空科学技术, 2021, 32(1): 10-16. |
DENG J H. Development and prospect of helicopter technology[J]. Aeronautical Science & Technology, 2021, 32(1): 10-16 (in Chinese). | |
2 | BENTLEY C E, SISSON M L. Joint future vertical lift (FVL) initiative[C]∥The AHS International 71th Annual Forum & Technology Display. 2015:1-10. |
3 | WILSON P, BELL, EHINGER R, et al. Bell V-280 valor: JMR TD flight test update-year 2[C]∥Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 1-8. |
4 | BOWLES P O, MATALANIS C, BATTISTI M, et al. Full-configuration CFD analysis of the S-97 RAIDER[C]∥Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 1-12. |
5 | LORBER P, BOWLES P, FOX E. Wind tunnel testing for the SB>1 defiant joint multi-role technology demonstrator[C]∥The AHS International 73rd Annual Forum & Technology Display. 2017: 1-18. |
6 | EHINGER R, MC M, WILSON P. Bell V-280 valor: A flight test update[C]∥The AHS International 74th Annual Forum & Technology Display. 2018:1-13. |
7 | KAMINSKI P. Technology and innovation enablers for superiority in 2030: ADA608507[R]. Washington, D.C.: Defense Science Board, 2013. |
8 | BLACHA M, FINK A, EGLIN P, et al. “Clean Sky 2”:Exploring new rotorcraft high speed configurations[C]∥The 43rd European Rotorcraft Forum. Milan: ERF, 2017:1-12. |
9 | BLACHA M, HELICOPTERS A, GARCIA-RIOS A, et al. The challenges for the integration of the drive shaft in the RACER’s wing configuration[C]∥Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 1-11. |
10 | JIMENEZ GARCIA A, BARAKOS G N. Numerical simulations on the ERICA tiltrotor[J]. Aerospace Science and Technology, 2017, 64: 171-191. |
11 | MAISEL M D, GIULIANETTI D J, DUGAN D C. The history of the XV-15 tilt rotor research aircraft: NASA SP-2000-4517[R]. Washington, D.C.: NASA, 2000. |
12 | DETORE J A, GAFFEY T M. The stopped-rotor variant of the proprotor VTOL aircraft[J]. Journal of the American Helicopter Society, 1970, 15(3): 45-56. |
13 | CHENEY M. The ABC helicopter[C]∥Proceedings of the AIAA/AHS VTOL Research, Design, and Operations Meeting. Reston: AIAA, 1969. |
14 | ROSENSTEIN H. Aerodynamic development of the V-22 tilt rotor[C]∥The 12th European Rotorcraft Forum. Garmisch: ERF, 1986. |
15 | WENTRUP M, YIN J, KUNZE P, et al. An overview of DLR compound rotorcraft aerodynamics and aeroacoustics activities within the cleansky2 NACOR project[C]∥The AHS International 74th Annual Forum & Technology Display. 2018. |
16 | SCHRAGE D P, STANZIONE K. Assessing the impact of hybrid distributed electric propulsion on VTOL aircraft design & system effectiveness[C]∥The AHS International 74th Annual Forum &Technology Display. 2018. |
17 | BAGAI A. Aerodynamic design of the X2 technology demonstrator main rotor blade[C]∥The 64th Annual National Forum of AHS. 2008: 1-16. |
18 | RUDDELL A J. Advancing blade concept (ABC) technology demonstrator: TR-81-d-5[R]. Stratford: AVRA⁃DCOM, 1981. |
19 | LINDEN A W, SIMON D, SCOTT L E. XH-59A ABC™ aircraft flight tests at ft. rucker, Alabama[J]. Aircraft Engineering and Aerospace Technology, 1982, 54(12): 14-18. |
20 | ARENTS D N. An assessment of the hover performance of the XH-59A advancing blade concept demonstration helicopter: USAAMRDL-TN-25[R]. Fort: USAAMRDL, 1977. |
21 | WALSH D, WEINER S, ARIFIAN K, et al. Development testing of the sikorsky X2 technology™ demonstrator[C]∥The 65th Annual Forum of the American Helicopter Society International. 2009. |
22 | BOUWER S, COMPANY T B, KAISER E. Design and development of the main rotor gearbox for the Sikorsky boeing SB>1 DEFIANT JMR technology demonstrator aircraft[C]∥Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 1-9. |
23 | PATRYHOW R. Sikorsky adapted to meet the U.S. army fara program timeline[C]∥The Vertical Flight Society’s 77th Annual Forum & Technology Display. 2021. |
24 | 徐敏. 倾转旋翼机的发展与关键技术综述[J]. 直升机技术, 2003(2): 40-44. |
XU M. Summary of development and key technologies of tilt-rotor aircraft[J]. Helicopter Technique, 2003(2): 40-44 (in Chinese). | |
25 | 陈恒, 左晓阳, 张玉琢. 倾转旋翼飞机技术发展研究[J]. 飞行力学, 2007, 25(1): 5-8. |
CHEN H, ZUO X Y, ZHANG Y Z. Tiltrotor aircraft key technology developing research[J]. Flight Dynamics, 2007, 25(1): 5-8 (in Chinese). | |
26 | THOMASON T H. THOMASON T H.The bell helicopter XV-3&XV-15 experimental aircraft-lessons learned [C]∥Proceedings of the AIAA/AHS/ASEE Aircraft Design, Systems and Operations Conference. 1990:1-9. |
27 | MEHRA R K, PRASANTH R K, GOPALASWAMY S. XV-15 tiltrotor flight control system design using model predictive control[C]∥1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339). Piscataway: IEEE Press, 2002: 139-148. |
28 | 薛蒙, 孙强. 倾转旋翼机军事需求与关键技术分析[J]. 直升机技术, 2020(1): 47-49, 27. |
XUE M, SUN Q. Tiltrotor military requirement and critical technology analysis[J]. Helicopter Technique, 2020(1): 47-49, 27 (in Chinese). | |
29 | 杨军, 吴希明, 凡永华, 等. 倾转旋翼机飞行控制[M]. 北京: 航空工业出版社, 2006. |
YANG J, WU X M, FAN Y H, et al. Flight control of the tilt-rotor aircraft[M]. Beijing: Aviation Industry Press, 2006 (in Chinese). | |
30 | 张庆, 殷永亮, 吴超. 美军倾转旋翼机的发展和事故分析[J]. 科学之友, 2011(10): 126-128. |
ZHANG Q, YIN Y L, WU C. Development and crash analysis of the American army inclines and transfers to the gyroplane[J]. Friend of Science Amateurs, 2011(10): 126-128 (in Chinese). | |
31 | BOLKCOM C. V-22 osprey tilt-rotor aircraft[EB/OL].(2021-02-08)[2023-09-10]. . |
32 | GERYLER J. V-22 Osprey tilt-rotor aircraft: Blackground and issues for congress, congressional research service[R]. Washington, D.C.: CRS Report for Congress, 2011. |
33 | 肖江涛. 新型无人倾转旋翼机过渡状态飞行控制律设计[D]. 南京: 南京航空航天大学, 2021. |
XIAO J T. Design of flight control law for the new configuration unmanned tilt-rotor aircraft in transition state[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
34 | 刘乾坤. 电驱无人倾转旋翼飞行器动力总成设计与仿真[D]. 南京: 南京航空航天大学, 2020. |
LIU Q K. Design and simulation of electric drive unmanned tilting rotorcraft powertrain[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
35 | HUBER M.AW609 flight testing achieves milestones[J]. Aviation International News, 2018, 49(11): 47. |
36 | 尹欣繁, 车兵辉, 章贵川, 等. 国外复合式高速直升机发展现状与关键技术[J]. 飞航导弹, 2019(11): 56-60. |
YIN X F, CHE B H, ZHANG G C, et al. Development status and key technologies of compound high-speed helicopters abroad[J]. Aerodynamic Missile Journal, 2019(11): 56-60 (in Chinese). | |
37 | 余震, 王永红. 复合式高速直升机传动系统关键技术分析[J]. 航空动力, 2018(3): 66-68. |
YU Z, WANG Y H. Key technologies of transmission system of high speed helicopters[J]. Aerospace Power, 2018(3): 66-68 (in Chinese). | |
38 | 黄明其, 徐栋霞, 何龙, 等. 常规旋翼构型复合式高速直升机发展概况及关键技术[J]. 航空动力学报, 2021, 36(6): 1156-1168. |
HUANG M Q, XU D X, HE L, et al. Development overview and key technologies of high speed hybrid helicopter with single main rotor[J]. Journal of Aerospace Power, 2021, 36(6): 1156-1168 (in Chinese). | |
39 | 丁达文. 单旋翼复合式高速直升机动力学建模及振动特征分析[D]. 南京: 南京航空航天大学, 2021. |
DING D W. Dynamic modeling and vibration characteristics analysis of A single rotor compound high speed helicopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
40 | 何振亚. 复合式高速直升机飞行性能研究[D]. 南京: 南京航空航天大学, 2021. |
HE Z Y. Research on flight performance of compound high-speed helicopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
41 | LOVERING Z. A3 by Airbus: Vahana[C]∥73rd Annual Vertical Flight Society Forum. 2010. |
42 | NORTH D D, BUSAN R C, HOWLAND G. Design and fabrication of the Langley aerodrome[C]∥8th Distributed Electric Propution VTOL Tested. AIAA Scitech Forum. Reston: AIAA, 2020. |
43 | MCSWAIN R, GEUTHER S, HOWLAND G, et al. An experimental approach to a rapid propulsion and aeronautics concepts testbed: NASA/TM-2020-220437 [R]. Washington, D.C.: NASA, 2020. |
44 | FERGUSON KEVIN M. Towards a better understanding of the flight mechanics of compound helicopter configurations[D]. Glasgow,Scotland: University of Glasgow, 2015. |
45 | PETER F, ZHAO J G, BOWLES P O, et al. S-97 RAIDER wake-empennage interaction flight data and correlation [C]∥The 77th Annual Forum of the VFS. 2021. |
46 | DENG J H, FAN F, LIU P A, et al. Aerodynamic characteristics of rigid coaxial rotorby wind tunnel test and numerical calculation[J]. Chinese Journal of Aero-nautics,2019, 32(3): 1-9. |
47 | WALSH D, WEINER S, ARIFIAN K, et al. High airspeed testing of the Sikorsky X2 technology(TM) demonstrator [C]∥The 67th Annual Forum of the AHS. 2011. |
48 | ELLER E. X2™ load alleviating controls [C]∥The 68th Annual Forum of AHS. 2012: 1-3. |
49 | JACOELLIS G, GANDHI F. Investigation of performance loads and vibrations of a coaxial helicopter in high speed-flight [C]∥The 72nd Annual Forum of the AHS. 2016. |
50 | SYAL M, LEISHMAN J G. Aerodynamic optimization study of a coaxial rotor in hovering flight[J]. Journal of the American Helicopter Society, 2012, 57(4): 1-15. |
51 | LEISHMAN J G, SYAL M. Figure of merit definition for coaxial rotors[J]. Journal of the American Helicopter Society, 2008, 53(3): 290. |
52 | BERGER T, HORN J, AVMC U A C, et al. Flight control design and simulation handling qualities assessment of high speed rotorcraft[C]∥Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 1-35. |
53 | SAETTI U. Rotorcraft flight control design with alleviation of unsteady rotor loads [D]. State College: Pennsylvania State University, 2019. |
54 | BLACKWELL R, MILLOTT T. Dynamics design characteristics of the Sikorsky X2 technology demonstrator aircraft[C]∥The 64th AHS Annual Forum Proceedings. 2008: 1-13. |
55 | YEO H, JOHNSON W. Investigation of maximum blade loading capability of lift-offset rotors[J]. Journal of the American Helicopter Society, 2014, 59(1): 1-12. |
56 | GO J I, KIM D H, PARK J S. Performance and vibration analyses of lift-offset helicopters[J]. International Journal of Aerospace Engineering, 2017, 2017: 1865751. |
57 | SCHMAUS J, CHOPRA I. Performance and loads of a model coaxial rotor Part II Prediction validations[C]∥The 72th Annual Forum of the AHS. 2016. |
58 | LEE Y L, KIM D H, PARK J S, et al. Vibration reduction simulations of a lift-offset compound helicopter using two active control techniques[J]. Aerospace Science and Technology, 2020, 106: 106181. |
59 | KWON Y M, HONG S B, PARK J S, et al. Active vibration reductions of a lift-offset compound helicopter using individual blade pitch control with multiple harmonic inputs[J]. Aircraft Engineering and Aerospace Technology, 2022, 94(6): 994-1008. |
60 | BANG S W, HONG S B, LEE Y B, et al. Active airframe vibration control study using a small-scale model for lift-offset compound helicopter[J]. International Journal of Aeronautical and Space Sciences, 2023, 24(1): 77-91. |
61 | BLACKWELL R, MILLOTT T. Dynamics design characteristics of the Sikorsky X2 TechnologyTM demonstrator air-craft[C]∥The 64th Annual Forum of the AHS. 2008,64(1):886. |
62 | APPLETON W, FILIPPONE A, BOJDO N. Interaction effects on the conversion corridor of tiltrotor aircraft[J].The Aeronautical Journal, 2021, 33(3): 1-22. |
63 | 刘佳豪, 李高华, 王福新. 倾转过渡状态旋翼-机翼气动干扰特性[J]. 航空学报, 2022, 43(12): 126097. |
LIU J H, LI G H, WANG F X. Rotor-wing aerodynamic interference characteristics in conversion mode [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126097 (in Chinese). | |
64 | SAVAGE M C, FARRELL M K, MCVEIGH W, et al. V-22 flight test aerodynamic refinement[C]∥The 39th Annual Forum of the American Helicopter Society. 1993:1167-1175. |
65 | DROANDI G, GIBERTINI G, GRASSI D, et al. Proprotor-wing aerodynamic interaction in the first stages of conversion from helicopter to aeroplane mode[J]. Aerospace Science and Technology, 2016, 58: 116-133. |
66 | NARRAMORE J C. Airfoil design, test, and evaluation for the V-22 tilt rotor vehicle[C]∥43th Annual National Forum of AHS. 1987: 49-60. |
67 | NARRAMORE J. Advanced technology airfoil development for the XV-15 tilt-rotor vehicle[C]∥Proceedings of the AIAA and NASA Ames VSTOL Conference. Reston: AIAA, 1981. |
68 | BEAUMIER P, DECOURS J, LEFEBVRE T, et al. Aerodynamic and aero-acoustic design of modern tilt-rotors: the ONERA experience[C]∥The 6th International Congress of the Aeronautical Sciences. 2008: 1-11. |
69 | THIERRY L, PHILIPPE B, SYLVETTE B, et al. Aerodynamic and aero-acoustic optimization of modern tilt-rotor blades within the adyn project[C]∥European Congress on Computational Methods in Applied Sciences and Engineering. 2004:1-20. |
70 | BERGER T. Handling qualities requirements and control design for high-speed rotorcraft [D]. State College: The Pennsylvania State University, 2019. |
71 | BERRIGAN C, MARK J, PRASAD J V R, et al. Bell V-280 system identification and model validation with flight test data using the joint input-output method[C]∥ Proceedings of the Vertical Flight Society 76th Annual Forum. 2020: 6-89. |
72 | RYSDYK R, CALISE A J, CHEN R T N. Nonlinear adaptive control of tiltrotor aircraft using neural networks[C]∥SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale, PA: SAE International, 1997. |
73 | SOBOL I M, STATNIKOV R B. Selecting optimal parameters in multicriteria problems [M]. 2nd ed. Moscow: Drofa, 2006: 89-105. |
74 | 董凌华, 杨卫东. 倾转旋翼回转颤振参数影响规律研究[J]. 航空科学技术, 2015, 26(11): 49-55. |
DONG L H, YANG W D. Parameters influence study of tiltrotor whirl flutter[J]. Aeronautical Science & Technology, 2015, 26(11): 49-55 (in Chinese). | |
75 | 王福新, 黄明其. 倾转旋翼飞行器的风洞试验技术综述[J]. 实验流体力学, 2005, 19(4): 85-89. |
WANG F X, HUANG M Q. A summary on the wind tunnel test techniques for tilting-rotor aircraft[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(4): 85-89 (in Chinese). | |
76 | VANAKEN J M. Alleviation of whirl-flutter on a joined-wing tilt-rotor aircraft configuration using active controls[C]∥The 47th AHS Annual Forum. 1991, 26: 1-27. |
77 | ACREE C W, PEYRAN R J, JOHNSON W. Rotor design options for improving tiltrotor whirl-flutter stability margins[J]. Journal of the American Helicopter Society, 2001, 46(2): 87-95. |
78 | YEO H. Investigation of UH-60A rotor performance and loads at high advance ratios[J]. Journal of Aircraft, 2013, 50(2): 576-589. |
79 | FREY F, THIEMEIER J, ÖHRLE C, et al. Aerodynamic interactions on airbus helicopters’ compound helicopter RACER in cruise flight[C]∥ Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 1-19. |
80 | TOROPOV M Y, STEPANOV S Y. Modeling of helicopter flight imitation in the vortex ring state[J]. Russian Aeronautics, 2016, 59(4): 517-522. |
81 | ORCHARD M, SOUYHAMPTON U O, NAW-MANS, et al. Some design issues for the optimization of the compound helicopter configuration[C]∥Proceedings of American Helicopter Society 56th Annual Forum. 2000. |
82 | THORSEN A T. A unified control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight[D]. State College: The Pennsylvania State University, 2016. |
83 | BOISARD R. Numerical analysis of rotor/propeller aerodynamic interactions on a high-speed compound helicopter[J]. Journal of the American Helicopter Society, 2022, 67(1): 1-15. |
84 | ÖHRLE C, EMBACHER M, HELICOPTERS A, et al. Compound helicopter X3 in high-speed flight: Correlation of simulation and flight test[C]∥Proceedings of the Vertical Flight Society 75th Annual Forum. 2019: 836-874. |
85 | 张卓然, 于立, 李进才, 等. 飞机电气化背景下的先进航空电机系统[J]. 南京航空航天大学学报, 2017, 49(5): 622-634. |
ZHANG Z R, YU L, LI J C, et al. Key technologies of advanced aircraft electrical machine systems for aviation electrification[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5): 622-634 (in Chinese). | |
86 | SHAO L, UNIVERSITY Z, XIE A, et al. The battery cooling design and simulation study in multirotor eVTOL aircraft[C]∥Proceedings of the Vertical Flight Society 79th Annual Forum. 2023. |
87 | ROIATI R, ANDERSON R, COLLINS K, et al. Development of a multi-rotor eVTOL using RPM, collective, and cyclic control[C]∥The Vertical Flight Society’s 78th Annual Forum &Technology Display. 2022:1-14. |
88 | DROANDI G, SYAL M, BOWER G. Tiltwing multi-rotor aerodynamic modeling in hover, transition and cruise flight conditions[C]∥The 74th Annual Forum & Technology Display. 2018: 1-16. |
89 | BUSAN R C, MURPHY P C, HATKE D B, et al. Wind tunnel testing techniques for a tandem tilt-wing, distributed electric propulsion VTOL aircraft[C]∥Proceedings of the AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
90 | GRAHAM WARWICK, 徐德康. NASA 的多发 VTOL 无人机进行飞行试验[J].国际航空, 2015(6): 76-77. |
GRAHAM WARWICK, XU D K. NASA multiple VTOL drones fly tests[J]. International Aviation, 2015(6):76-77 (in Chinese). | |
91 | KATHY B. Ten-engine electric plane completes successful flight test [EB/OL]. (2015-11-24)[2023-04-20]. . |
92 | HOOVER C B, SHEN J W, KRESHOCK A R. Propeller whirl flutter stability and its influence on X-57 aircraft design[J]. Journal of Aircraft, 2018, 55(5): 2169-2175. |
93 | MILLS B, DATTA A. Fundamental studies of variable-voltage hybrid-electric powertrains[J]. Journal of the American Helicopter Society, 2021, 66(2): 1-14. |
94 | 王伟, 周洲, 祝小平, 等. 基于CR理论的大柔性太阳能无人机非线性配平及飞行载荷分析[J]. 西北工业大学学报, 2015, 33(4): 566-572. |
WANG W, ZHOU Z, ZHU X P, et al. CR approach of nonlinear trim and flight load analysis of very flexible solar powered UAV[J]. Journal of Northwestern Polytechnical University, 2015, 33(4): 566-572 (in Chinese). |
[1] | Bo LI, Xiao WANG. Dynamic modeling and modal analysis of coaxial rotors/auxiliary propeller/drive train coupled system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528945-528945. |
[2] | Fengying ZHENG, Zhimin SHEN, Yaqin LI, Kaizhao XU, Xinhua WANG. Gain adaptive multi-mode switching control for coaxial high-speed helicopter [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529088-529088. |
[3] | Dazhi SUN, Xi CHEN, Weicheng BAO, Wei BIAN, Qijun ZHAO. Interferences of high-speed helicopter fuselage on aerodynamic and aeroacoustic source characteristics of propeller [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529142-529142. |
[4] | Changhao LIU, Yihua CAO, Xiaomeng MEI, Maosheng WANG, Guanglin ZHANG. Transport effectiveness evaluation of high⁃speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 530182-530182. |
[5] | Yuqing QIU, Yan LI, Jinxi LANG, Yuxian LIU, Zhong WANG. Robust adaptive attitude control of high-speed helicopters in transition mode [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529927-529927. |
[6] | Shaoqiang HAN, Wenping SONG, Zhonghua HAN, Jianhua XU. High-accuracy numerical-simulation of unsteady flow over high-speed coaxial rigid rotors [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529064-529064. |
[7] | Zixu WANG, Pan LI, Ke LU, Zhenhua ZHU, Renliang CHEN. Optimized design of trim strategy for coaxial rigid rotor high-speed helicopter [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529069-529069. |
[8] | Bowen NIE, Liangquan WANG, Zhiyin HUANG, Long HE, Shipeng YANG, Hongtao YAN, Guichuan ZHANG. Flight dynamics modeling and control scheme design of compound high-speed unmanned helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529848-529848. |
[9] | Xuehe WANG, Chunshuo CHAI, Shilong XING, Feng FAN, Shuilin HUANG. Design of coaxial high⁃speed helicopter airfoil in reverse flow region and its drag reduction mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529960-529960. |
[10] | WANG Huan-jin;GAO Zheng. The Scheme of High-Speed Helicopter RD15 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(1): 36-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341