Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (18): 128328-128328.
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Jingkui ZHANG1, Jiapeng CHANG1, Miao CUI2(), Qifen LI1, Hongbo REN1, Yongwen YANG1
Received:
2022-11-28
Revised:
2023-01-29
Accepted:
2023-03-17
Online:
2023-09-25
Published:
2023-04-03
Contact:
Miao CUI
E-mail:miaocui@dlut.edu.cn
Supported by:
CLC Number:
Jingkui ZHANG, Jiapeng CHANG, Miao CUI, Qifen LI, Hongbo REN, Yongwen YANG. First Hopf bifurcation of conducting fluid in three-dimensional square cavity[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128328-128328.
Table 1
Prediction of critical parameters by the first Hopf bifurcation in a three-dimensional square cavity
1 914 | ||
1 700~1 970 | ||
1 750~1 950 | ||
1 | REYNOLDS O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[J]. Philosophical Transactions of the Royal Society of London, 1883, 174: 935-982. |
2 | 孔维萱, 阎超, 赵瑞. 壁面温度条件对边界层转捩预测的影响[J]. 航空学报, 2013, 34(10): 2249-2255. |
KONG W X, YAN C, ZHAO R. Effect of wall temperature on boundary layer transition prediction using transition model[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2249-2255 (in Chinese). | |
3 | 刘清扬, 雷娟棉, 刘周, 等. 适用于可压缩流动的γ-Ret -fRe 转捩模型[J]. 航空学报, 2022, 43(8): 125794. |
LIU Q Y, LEI J M, LIU Z, et al. γ-Ret -fRe transition model for compressible flow[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125794 (in Chinese). | |
4 | FELDMAN Y, GELFGAT A Y. Oscillatory instability of a three-dimensional lid-driven flow in a cube[J]. Physics of Fluids, 2010, 22(9): 093602. |
5 | KUHLMANN H C, ALBENSOEDER S. Stability of the steady three-dimensional lid-driven flow in a cube and the supercritical flow dynamics[J]. Physics of Fluids, 2014, 26(2): 024104. |
6 | CAZEMIER W, VERSTAPPEN R W C P, VELDMAN A E P. Proper orthogonal decomposition and low-dimensional models for driven cavity flows[J]. Physics of Fluids, 1998, 10(7): 1685-1699. |
7 | AUTERI F, PAROLINI N, QUARTAPELLE L. Numerical investigation on the stability of singular driven cavity flow[J]. Journal of Computational Physics, 2002, 183(1): 1-25. |
8 | PENG Y F, SHIAU Y H, HWANG R R. Transition in a 2-D lid-driven cavity flow[J]. Computers & Fluids, 2003, 32(3): 337-352. |
9 | SENGUPTA T K, SINGH N, SUMAN V K. Dynamical system approach to instability of flow past a circular cylinder[J]. Journal of Fluid Mechanics, 2010, 656: 82-115. |
10 | BOPPANA V B L, GAJJAR J S B. Global flow instability in a lid-driven cavity[J]. International Journal for Numerical Methods in Fluids, 2009, 62(8): 827-853. |
11 | BREZILLON A, GIRAULT G, CADOU J M. A numerical algorithm coupling a bifurcating indicator and a direct method for the computation of Hopf bifurcation points in fluid mechanics[J]. Computers & Fluids, 2010, 39(7): 1226-1240. |
12 | SENGUPTA T K, VIJAY V V S N, SINGH N. Universal instability modes in internal and external flows[J]. Computers & Fluids, 2011, 40(1): 221-235. |
13 | LIN L S, CHANG H W, LIN C A. Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU[J]. Computers & Fluids, 2013, 80: 381-387. |
14 | GORBAN A N, PACKWOOD D J. Enhancement of the stability of lattice Boltzmann methods by dissipation control[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 414: 285-299. |
15 | LESTANDI L, BHAUMIK S, AVATAR G R K C, et al. Multiple Hopf bifurcations and flow dynamics inside a 2D singular lid driven cavity[J]. Computers & Fluids, 2018, 166: 86-103. |
16 | SUMAN V K, VIKNESH S S, TEKRIWAL M K, et al. Grid sensitivity and role of error in computing a lid-driven cavity problem[J]. Physical Review E, 2019, 99: 013305. |
17 | WANG T, LIU T G. Transition to chaos in lid–driven square cavity flow[J]. Chinese Physics B, 2021, 30(12): 120508. |
18 | SHEN J. Hopf bifurcation of the unsteady regularized driven cavity flow[J]. Journal of Computational Physics, 1991, 95(1): 228-245. |
19 | LOISEAU J C, ROBINET J C, LERICHE E. Intermittency and transition to chaos in the cubical lid-driven cavity flow[J]. Fluid Dynamics Research, 2016, 48(6): 061421. |
20 | GELFGAT A Y. Linear instability of the lid-driven flow in a cubic cavity[J]. Theoretical and Computational Fluid Dynamics, 2019, 33(1): 59-82. |
21 | ZHANG J K, CUI M, ZUO Z L, et al. Prediction on steady-oscillatory transition via Hopf bifurcation in a three-dimensional (3D) lid-driven cube[J]. Computers & Fluids, 2021, 229: 105068. |
22 | LIBERZON A, FELDMAN Y, GELFGAT A Y. Experimental observation of the steady-oscillatory transition in a cubic lid-driven cavity[J]. Physics of Fluids, 2011, 23(8): 084106. |
23 | CHANG H W, HONG P Y, LIN L S, et al. Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units[J]. Computers & Fluids, 2013, 88: 866-871. |
24 | ANUPINDI K, LAI W C, FRANKEL S. Characterization of oscillatory instability in lid driven cavity flows using lattice Boltzmann method[J]. Computers & Fluids, 2014, 92: 7-21. |
25 | HAMMAMI F, SOUAYEH B, BEN-CHEIKH N, et al. Computational analysis of fluid flow due to a two-sided lid driven cavity with a circular cylinder[J]. Computers & Fluids, 2017, 156: 317-328. |
26 | ZHANG J K, CUI M, LI B W, et al. Performance of combined spectral collocation method and artificial compressibility method for 3D incompressible fluid flow and heat transfer[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2020, 30: 5037-5062. |
27 | ZHANG J K, DONG H, ZHOU E Z, et al. A combined method for solving 2D incompressible flow and heat transfer by spectral collocation method and artificial compressibility method[J]. International Journal of Heat and Mass Transfer, 2017, 112: 289-299. |
28 | CHORIN A J. A numerical method for solving incompressible viscous flow problems[J]. Journal of Computational Physics, 1997, 135(2): 118-125. |
29 | CANUTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral methods: Fundamentals in single domains[M]. Berlin: Springer, 2006. |
30 | YU P X, TIAN Z F. A high-order compact scheme for the pure streamfunction (vector potential) formulation of the 3D steady incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2019, 382: 65-85. |
31 | SHU C, WANG L, CHEW Y T. Numerical computation of three-dimensional incompressible Navier-Stokes equations in primitive variable form by DQ method[J]. International Journal for Numerical Methods in Fluids, 2003, 43(4): 345-368. |
32 | ALBENSOEDER S, KUHLMANN H C. Accurate three-dimensional lid-driven cavity flow[J]. Journal of Computational Physics, 2005, 206(2): 536-558. |
33 | BHAUMIK S, SENGUPTA T K. A new velocity-vorticity formulation for direct numerical simulation of 3D transitional and turbulent flows[J]. Journal of Computational Physics, 2015, 284: 230-260. |
[1] | . Study on Calculation Method of Heat Flow at Stagnation Point of Spherical Head Based on Boundary Layer Theory [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[2] | . Unsteady hydrodynamic load reconstruction of seaplane based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[3] | Zeyu REN, Xiaogang WANG, Shaohua CHENG, Xiaobo QUAN. Numerical simulation and experiment of ventilated cloud cavitation on underwater vehicle under vertical emission conditions [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528450-528450. |
[4] | Yunlong ZHENG, Peiqing LIU, Qiulin QU, Jiahua DAI, Yu TIAN. Numerical investigation on motion characteristics of BWB aircraft in ditching [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528588-528588. |
[5] | Sihua LIU, Zhanying WANG, Lijian LI, Mindi ZHANG. Influence of nose shapes on high-speed water entry stability of projectile [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528437-528437. |
[6] | Jingyang ZHANG, Zhe CHEN, Yuanwei LYU, Yijian SUN, Jingzhou ZHANG, Weidong CHEN, Xinyang LUO. Analysis method and distribution characteristics of non-uniform slip flow at fluid-solid interface of gas foil bearing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 127639-127639. |
[7] | Zeyong YIN, Yancheng YOU, Chengxiang ZHU, Jianfeng ZHU, Liaoni WU, Yue HUANG. Multi-ducted twin-turbines ejector-ramjet/scramjet combined cycle engine for hypersonic civil vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 627181-627181. |
[8] | CHENG Jianrui, SHI Chongguang, QU Lixia, XU Yue, YOU Yancheng, ZHU Chengxiang. Theoretical model of 2D curved shock wave/turbulent boundary layer interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125993-125993. |
[9] | ZHANG Haibin, BAI Bofeng. Droplet dispersion of hollow cone spray in gaseous crossflow: Characteristics and influencing factors [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(11): 123927-123927. |
[10] | HU Dongyuan, YANG Rennong, YAN Mengda, YUE Longfei, ZUO Jialiang, WANG Ying. Real-time calculation of missile launch envelope based on auto-encoder network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(4): 323571-323571. |
[11] | WEN Hao, SHI Aiming, YAN Rong. Boundary layer effects on rules of minimum oblique shock strength [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(12): 123196-123196. |
[12] | SHI Aiming, Earl H DOWELL. Theoretical solutions and physical significances for minimum ratio of total pressure loss by oblique shock [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(12): 122517-122517. |
[13] | CAO Huazi, GUO Youguang, WANG Lixin. Handling qualities research of flying boom for air-to-air refueling based on mission-oriented method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(4): 121523-121523. |
[14] | ZHANG Rui, ZHOU Chaoying, WANG Chao, XIE Peng. Aerodynamic characteristics of dragonfly in asymmetric flapping [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(12): 121389-121389. |
[15] | ZHANG Shengwei, WANG Wei. Method for evaluating powered high-lift effects of externally blown flap [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(6): 220689-220689. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 238
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341