1 |
REYNOLDS O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[J]. Philosophical Transactions of the Royal Society of London, 1883, 174: 935-982.
|
2 |
孔维萱, 阎超, 赵瑞. 壁面温度条件对边界层转捩预测的影响[J]. 航空学报, 2013, 34(10): 2249-2255.
|
|
KONG W X, YAN C, ZHAO R. Effect of wall temperature on boundary layer transition prediction using transition model[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2249-2255 (in Chinese).
|
3 |
刘清扬, 雷娟棉, 刘周, 等. 适用于可压缩流动的γ-Ret -fRe 转捩模型[J]. 航空学报, 2022, 43(8): 125794.
|
|
LIU Q Y, LEI J M, LIU Z, et al. γ-Ret -fRe transition model for compressible flow[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125794 (in Chinese).
|
4 |
FELDMAN Y, GELFGAT A Y. Oscillatory instability of a three-dimensional lid-driven flow in a cube[J]. Physics of Fluids, 2010, 22(9): 093602.
|
5 |
KUHLMANN H C, ALBENSOEDER S. Stability of the steady three-dimensional lid-driven flow in a cube and the supercritical flow dynamics[J]. Physics of Fluids, 2014, 26(2): 024104.
|
6 |
CAZEMIER W, VERSTAPPEN R W C P, VELDMAN A E P. Proper orthogonal decomposition and low-dimensional models for driven cavity flows[J]. Physics of Fluids, 1998, 10(7): 1685-1699.
|
7 |
AUTERI F, PAROLINI N, QUARTAPELLE L. Numerical investigation on the stability of singular driven cavity flow[J]. Journal of Computational Physics, 2002, 183(1): 1-25.
|
8 |
PENG Y F, SHIAU Y H, HWANG R R. Transition in a 2-D lid-driven cavity flow[J]. Computers & Fluids, 2003, 32(3): 337-352.
|
9 |
SENGUPTA T K, SINGH N, SUMAN V K. Dynamical system approach to instability of flow past a circular cylinder[J]. Journal of Fluid Mechanics, 2010, 656: 82-115.
|
10 |
BOPPANA V B L, GAJJAR J S B. Global flow instability in a lid-driven cavity[J]. International Journal for Numerical Methods in Fluids, 2009, 62(8): 827-853.
|
11 |
BREZILLON A, GIRAULT G, CADOU J M. A numerical algorithm coupling a bifurcating indicator and a direct method for the computation of Hopf bifurcation points in fluid mechanics[J]. Computers & Fluids, 2010, 39(7): 1226-1240.
|
12 |
SENGUPTA T K, VIJAY V V S N, SINGH N. Universal instability modes in internal and external flows[J]. Computers & Fluids, 2011, 40(1): 221-235.
|
13 |
LIN L S, CHANG H W, LIN C A. Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU[J]. Computers & Fluids, 2013, 80: 381-387.
|
14 |
GORBAN A N, PACKWOOD D J. Enhancement of the stability of lattice Boltzmann methods by dissipation control[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 414: 285-299.
|
15 |
LESTANDI L, BHAUMIK S, AVATAR G R K C, et al. Multiple Hopf bifurcations and flow dynamics inside a 2D singular lid driven cavity[J]. Computers & Fluids, 2018, 166: 86-103.
|
16 |
SUMAN V K, VIKNESH S S, TEKRIWAL M K, et al. Grid sensitivity and role of error in computing a lid-driven cavity problem[J]. Physical Review E, 2019, 99: 013305.
|
17 |
WANG T, LIU T G. Transition to chaos in lid–driven square cavity flow[J]. Chinese Physics B, 2021, 30(12): 120508.
|
18 |
SHEN J. Hopf bifurcation of the unsteady regularized driven cavity flow[J]. Journal of Computational Physics, 1991, 95(1): 228-245.
|
19 |
LOISEAU J C, ROBINET J C, LERICHE E. Intermittency and transition to chaos in the cubical lid-driven cavity flow[J]. Fluid Dynamics Research, 2016, 48(6): 061421.
|
20 |
GELFGAT A Y. Linear instability of the lid-driven flow in a cubic cavity[J]. Theoretical and Computational Fluid Dynamics, 2019, 33(1): 59-82.
|
21 |
ZHANG J K, CUI M, ZUO Z L, et al. Prediction on steady-oscillatory transition via Hopf bifurcation in a three-dimensional (3D) lid-driven cube[J]. Computers & Fluids, 2021, 229: 105068.
|
22 |
LIBERZON A, FELDMAN Y, GELFGAT A Y. Experimental observation of the steady-oscillatory transition in a cubic lid-driven cavity[J]. Physics of Fluids, 2011, 23(8): 084106.
|
23 |
CHANG H W, HONG P Y, LIN L S, et al. Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units[J]. Computers & Fluids, 2013, 88: 866-871.
|
24 |
ANUPINDI K, LAI W C, FRANKEL S. Characterization of oscillatory instability in lid driven cavity flows using lattice Boltzmann method[J]. Computers & Fluids, 2014, 92: 7-21.
|
25 |
HAMMAMI F, SOUAYEH B, BEN-CHEIKH N, et al. Computational analysis of fluid flow due to a two-sided lid driven cavity with a circular cylinder[J]. Computers & Fluids, 2017, 156: 317-328.
|
26 |
ZHANG J K, CUI M, LI B W, et al. Performance of combined spectral collocation method and artificial compressibility method for 3D incompressible fluid flow and heat transfer[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2020, 30: 5037-5062.
|
27 |
ZHANG J K, DONG H, ZHOU E Z, et al. A combined method for solving 2D incompressible flow and heat transfer by spectral collocation method and artificial compressibility method[J]. International Journal of Heat and Mass Transfer, 2017, 112: 289-299.
|
28 |
CHORIN A J. A numerical method for solving incompressible viscous flow problems[J]. Journal of Computational Physics, 1997, 135(2): 118-125.
|
29 |
CANUTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral methods: Fundamentals in single domains[M]. Berlin: Springer, 2006.
|
30 |
YU P X, TIAN Z F. A high-order compact scheme for the pure streamfunction (vector potential) formulation of the 3D steady incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2019, 382: 65-85.
|
31 |
SHU C, WANG L, CHEW Y T. Numerical computation of three-dimensional incompressible Navier-Stokes equations in primitive variable form by DQ method[J]. International Journal for Numerical Methods in Fluids, 2003, 43(4): 345-368.
|
32 |
ALBENSOEDER S, KUHLMANN H C. Accurate three-dimensional lid-driven cavity flow[J]. Journal of Computational Physics, 2005, 206(2): 536-558.
|
33 |
BHAUMIK S, SENGUPTA T K. A new velocity-vorticity formulation for direct numerical simulation of 3D transitional and turbulent flows[J]. Journal of Computational Physics, 2015, 284: 230-260.
|