Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (20): 628492-628492.doi: 10.7527/S1000-6893.2023.28492
• special column • Previous Articles Next Articles
Tongyan WU, Mengzhen HUO, Haibin DUAN(), Yimin DENG
Received:
2023-01-09
Revised:
2023-02-06
Accepted:
2023-02-15
Online:
2023-10-25
Published:
2023-03-03
Contact:
Haibin DUAN
E-mail:hbduan@buaa.edu.cn
Supported by:
CLC Number:
Tongyan WU, Mengzhen HUO, Haibin DUAN, Yimin DENG. Biologically eagle-eye and midbrain mechanism-based saliency detection of UAV aerial refueling targets[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 628492-628492.
1 | REN J R, QUAN Q, LIU C J, et al. Docking control for probe-drogue refueling: An additive-state-decomposition-based output feedback iterative learning control method[J]. Chinese Journal of Aeronautics, 2020, 33(3): 1016-1025. |
2 | 张国斌, 张青斌, 丰志伟, 等. 软式空中加油对接约束力不确定性分析[J]. 航空学报, 2021, 42(9): 224517. |
ZHANG G B, ZHANG Q B, FENG Z W, et al. Uncertainty analysis on binding force of hose-drogue aerial refueling[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224517 (in Chinese). | |
3 | 吴慈航, 闫建国, 钱先云, 等. 受油机指定时间姿态稳定控制[J]. 航空学报, 2022, 43(2): 324996. |
WU C H, YAN J G, QIAN X Y, et al. Predefined-time attitude stabilization control of receiver aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 324996 (in Chinese). | |
4 | 邹泉, 华艺欣, 邵翥, 等.自主空中加油能力需求及关键评价指标分析[J/OL].系统仿真学报:1-11 [2023-01-02]. DOI: 10.16182/j.issn1004731x.joss.22-0655 . |
ZOU Q, HUA Y X, SHAO Z, et al. Analysis of capability requirements and key evaluation indicators for autonomous air refueling[J/OL]. Journal of System Simulation: 1-11[2023-01-02]. DOI:10.16182/j.issn1004731x.joss.22-0655 (in Chinese). | |
5 | 唐崇武, 汪刚志, 张飞飞. 面向自主空中加油的锥套识别与测量算法研究[J]. 电子测量技术, 2022, 45(1): 111-116. |
TANG C W, WANG G Z, ZHANG F F. Drogue detection and position measurement algorithm research for autonomous aerial refueling[J]. Electronic Measurement Technology, 2022, 45(1): 111-116 (in Chinese). | |
6 | GARCIA J A B, YOUNES A B. Real-time navigation for drogue-type autonomous aerial refueling using vision-based deep learning detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2225-2246. |
7 | LEE A, DALLMANN W, NYKL S, et al. Long-range pose estimation for aerial refueling approaches using deep neural networks[J]. Journal of Aerospace Information Systems, 2020, 17(11): 634-646. |
8 | CHOI A J, YANG H H, HAN J H. Study on robust aerial docking mechanism with deep learning based drogue detection and docking[J]. Mechanical Systems and Signal Processing, 2021, 154: 107579. |
9 | 王宏伦, 阮文阳, 王延祥, 等. 基于可变视场角的空中加油锥套位姿精确测量方法[J]. 战术导弹技术, 2020(4): 135-143. |
WANG H L, RUAN W Y, WANG Y X, et al. Accurate measurement of refueling drogue pose based on variable field angle[J]. Tactical Missile Technology, 2020(4): 135-143 (in Chinese). | |
10 | XU X B, DUAN H B, GUO Y J, et al. A cascade adaboost and CNN algorithm for drogue detection in UAV autonomous aerial refueling[J]. Neurocomputing, 2020, 408: 121-134. |
11 | BORJI A, CHENG M M, HOU Q B, et al. Salient object detection: A survey[J]. Computational Visual Media, 2019, 5(2): 117-150. |
12 | 段海滨, 张奇夫, 范彦铭, 等. 基于计算机视觉的UAV自主空中加油半物理仿真[J]. 北京航空航天大学学报, 2013, 39(11): 1491-1496. |
DUAN H B, ZHANG Q F, FAN Y M, et al. Hardware-in-loop simulation platform for UAV autonomous aerial refueling based on computer vision[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1491-1496 (in Chinese). | |
13 | 段海滨, 张奇夫, 邓亦敏, 等. 基于仿鹰眼视觉的无人机自主空中加油[J]. 仪器仪表学报, 2014, 35(7): 1450-1458. |
DUAN H B, ZHANG Q F, DENG Y M, et al. Biologically eagle-eye-based autonomous aerial refueling for unmanned aerial vehicles[J]. Chinese Journal of Scientific Instrument, 2014, 35(7): 1450-1458 (in Chinese). | |
14 | ZHU W J, LIANG S, WEI Y C, et al. Saliency optimization from robust background detection[C]∥ 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 2814-2821. |
15 | 孙永斌. 基于仿生智能的无人机软式自主空中加油技术研究[D]. 北京: 北京航空航天大学, 2021: 5-21. |
SUN Y B. UAV probe-and-drogue autonomous aerial refueling techniques based on bionic intelligence [D]. Beijing: Beihang University, 2021: 5-21 (in Chinese). | |
16 | 段海滨, 邓亦敏, 王晓华. 仿鹰眼视觉及应用[M] . 北京: 科学出版社, 2021: 1-17. |
DUAN H B, DENG Y M, WANG X H. Biological eagle-eye vision and its applications [M]. Beijing: Science Press, 2021: 1-17 (in Chinese). | |
17 | GUZMAN-PANDO A, CHACON-MURGUIA M I. DeepFoveaNet: Deep fovea eagle-eye bioinspired model to detect moving objects[J]. IEEE Transactions on Image Processing, 2021, 30: 7090-7100. |
18 | LI X, DUAN H B, LI J C, et al. Biological eagle eye-based method for change detection in water scenes[J]. Pattern Recognition, 2022, 122: 108203. |
19 | GOLDSMITH T H. Optimization, constraint, and history in the evolution of eyes[J]. The Quarterly Review of Biology, 1990, 65(3): 281-322. |
20 | KEMP D J, HERBERSTEIN M E, FLEISHMAN L J, et al. An integrative framework for the appraisal of coloration in nature[J]. The American Naturalist, 2015, 185(6): 705-724. |
21 | OLSSON P. Colour vision in birds: Comparing behavioral thresholds and model predictions[D]. Lund: Lund University, 2016. |
22 | MITKUS M, POTIER S, MARTIN G R, et al. Raptor vision[M]∥The Oxford Research Encyclopedia of Neuroscience, 2018. |
23 | BADEN T, EULER T, BERENS P. Understanding the retinal basis of vision across species[J]. Nature Reviews Neuroscience, 2020, 21(1): 5-20. |
24 | YUAN B H, HAN L X, YAN H. Explore double-opponency and skin color for saliency detection[J]. Neurocomputing, 2021, 425: 219-230. |
25 | BECKWITH-COHEN B, HOROWITZ I, BDOLAH-ABRAM T, et al. Differences in ocular parameters between diurnal and nocturnal raptors[J]. Veterinary Ophthalmology, 2015, 18: 98-105. |
26 | POTIER S, MITKUS M, KELBER A. Visual adaptations of diurnal and nocturnal raptors[J]. Seminars in Cell & Developmental Biology, 2020, 106: 116-126. |
27 | MYSORE S P, KNUDSEN E I. Descending control of neural bias and selectivity in a spatial attention network: Rules and mechanisms[J]. Neuron, 2014, 84(1): 214-226. |
28 | KNUDSEN E I. Control from below: The role of a midbrain network in spatial attention[J]. European Journal of Neuroscience, 2011, 33(11): 1961-1972. |
29 | GODDARD C A, SRIDHARAN D, HUGUENARD J R, et al. Gamma oscillations are generated locally in an attention-related midbrain network[J]. Neuron, 2012, 73(3): 567-580. |
30 | GODDARD C A, HUGUENARD J, KNUDSEN E. Parallel midbrain microcircuits perform independent temporal transformations[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2014, 34(24): 8130-8138. |
31 | ASADOLLAHI A, KNUDSEN E I. Spatially precise visual gain control mediated by a cholinergic circuit in the midbrain attention network[J]. Nature Communications, 2016, 7: 13472. |
32 | KNUDSEN E I, SCHWARZ J S, KNUDSEN P F, et al. Space-specific deficits in visual orientation discrimination caused by lesions in the midbrain stimulus selection network[J]. Current Biology, 2017, 27(14): 2053-2064.e5. |
33 | GOFERMAN S, ZELNIK-MANOR L, TAL A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926. |
34 | ZHANG J M, SCLAROFF S. Exploiting surroundedness for saliency detection: A Boolean map approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(5): 889-902. |
35 | 王晓华. 基于仿鹰眼-脑机制的小目标识别技术研究[D]. 北京: 北京航空航天大学, 2018: 11-23. |
WANG X H. Research on small target recognition based on eagle eye-brain mechanisms[D]. Beijing: Beihang University, 2018: 11-23 (in Chinese). | |
36 | WANG L J, LU H C, WANG Y F, et al. Learning to detect salient objects with image-level supervision[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 3796-3805. |
37 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. |
38 | HOU X D, ZHANG L Q. Saliency detection: a spectral residual approach[C]∥2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2007: 1-8. |
39 | ZHANG L H, YANG C, LU H C, et al. Ranking saliency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(9): 1892-1904. |
[1] | Haifeng WANG, Kunpeng LIU, Hongxin JIANG, Chenxi DU. Aerodynamic optimization method of propeller multi⁃design points and variable pitch angle strategy [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528831-528831. |
[2] | Jing ZHAO, Dan SONG. Integrity monitoring method for GNSS/IMU integrated navigation system of UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 328943-328943. |
[3] | Chuanyun WANG, Yang SU, Linlin WANG, Tian WANG, Jingjing WANG, Qian GAO. Multi-object continuous robust tracking algorithm for anti-UAV swarm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 329017-329017. |
[4] | Hongyu YIN, Yu WU, Tianjiao LIANG. Cooperative path planning for patrol coverage of fixed wing UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 328944-328944. |
[5] | Chuihuan KONG, Dawei WU, Zhaoguang TAN, Lijun PAN, Rubing MA, Jiangtao SI. Design of fully electric scheme for three⁃surface verification aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629618-629618. |
[6] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[7] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
[8] | Yunpeng CAI, Dapeng ZHOU, Jiangchuan DING. Intelligent collaborative control of UAV swarms with collision avoidance safety constraints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529683-529683. |
[9] | Gaojie ZHENG, Xiaoming HE, Dongpo LI, Huijun TAN, Kun WANG, Zhenlong WU, Depeng WANG. Double 90° deflection inlet/volute coupling flow characteristics of tail-powered unmanned aerial vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128782-128782. |
[10] | Zhu WANG, Mengtong ZHANG, Zhenpeng ZHANG, Guangtong XU. Multi-UAV cooperative path planning based on multi-index dynamic priority [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328816-328816. |
[11] | Hongzhen GUO, Mou CHEN, Yongdong DAI, Maofei WANG. Distributed adaptive event⁃triggered formation control for QUAVs [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729917-729917. |
[12] | Kunda LIU, Xueming LIU, Bo ZHU, Qingrui ZHANG. Robust safe control for multi⁃UAV formation flight through narrow corridors [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729768-729768. |
[13] | Wenkang HAO, Suyan BAO, Qifeng CHEN. Distributed control of UAVs formation based on port⁃Hamiltonian system [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729868-729868. |
[14] | Yuqi CAO, Haoran FU, Fei GAO, Ximin LYU. Trajectory tracking control algorithm for canard⁃equipped tail⁃sitting vertical takeoff and landing UAV based on MPCC [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729950-729950. |
[15] | Zhenwei WANG, Kai LIU, Jian GUO, Xiaopeng LIU. A multi⁃UAVs and multi⁃USVs formation cooperative mechanism based on leader⁃follower strategy [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729791-729791. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341