1 |
TATSCH A, FITZ-COY N, GLADUN S. On-orbit servicing: A brief survey[C]∥Performance Metrics for Intelligent Systems Conference. 2006.
|
2 |
梁斌, 徐文福, 李成, 等. 地球静止轨道在轨服务技术研究现状与发展趋势[J]. 宇航学报, 2010, 31(1): 1-13.
|
|
LIANG B, XU W F, LI C, et al. The status and prospect of orbital servicing in the geostationary orbit[J]. Journal of Astronautics, 2010, 31(1): 1-13 (in Chinese).
|
3 |
崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4): 805-811.
|
|
CUI N G, WANG P, GUO J F, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007, 28(4): 805-811 (in Chinese).
|
4 |
XIAO Y Z, JIN Y Q, CHEN H L, et al. Research progress on several key technologies of on-orbit service[J]. Aerospace Shanghai (Chinese & English), 2021, 38(3): 85-95 (in Chinese).
|
5 |
梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2): 242-256.
|
|
LIANG B, DU X D, LI C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2): 242-256 (in Chinese).
|
6 |
丰飞. 空间大容差末端执行器及其软捕获策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 1-5.
|
|
FENG F. Research on space large misalignment tolerance end-effector and its soft capture strategy[D]. Harbin: Harbin Institute of Technology, 2012: 1-5 (in Chinese).
|
7 |
XU S, CHU M, SUN H X. Design and stiffness optimization of bionic docking mechanism for space target acquisition[J]. Applied Sciences, 2021, 11(21): 10278.
|
8 |
王文龙, 杨建中. 航天器对接与捕获技术综述[J]. 机械工程学报, 2021, 57(20): 215-231.
|
|
WANG W L, YANG J Z. Spacecraft docking & capture technology: review[J]. Journal of Mechanical Engineering. 2021, 57(20): 215-231 (in Chinese).
|
9 |
ZHANG X, HUANG Y Y, CHEN X Q. Analysis and design of parameters in soft docking of micro/small satellites[J]. Science China Information Sciences, 2017, 60(5): 050204.
|
10 |
HUANG P F, HU Z H, MENG Z J. Coupling dynamics modelling and optimal coordinated control of tethered space robot[J]. Aerospace Science and Technology, 2015, 41: 36-46.
|
11 |
HUANG P F, ZHANG F, CAI J, et al. Dexterous tethered space robot: design, measurement, control, and experiment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1452-1468.
|
12 |
HUANG P F, WANG D K, MENG Z J, et al. Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2260-2271.
|
13 |
MOTAGHEDI P, STAMM S. 6 DOF testing of the orbital express capture system[C]∥ Proceedings of SPIE-the International Society for Optical Engineering. 2005: 66-81.
|
14 |
UYAMA N, NAKANISHI H, NAGAOKA K, et al. Impedance-based contact control of a free-flying space robot with a compliant wrist for non-cooperative satellite capture[C]∥2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012: 4477-4482.
|
15 |
UYAMA N, FUJII Y, NAGAOKA K, et al. Experimental evaluation of contact/impact dynamics between a space robot with a compliant wrist and a free-flying object[C]∥International Symposium on Artificial Intelligence. 2012.
|
16 |
刘晋豪. 非合作卫星对接缓冲机构及其地面实验的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 10-17.
|
|
LIU J H. Buffering mechanism and ground experiment for capturing of non-cooperative satellite[D]. Harbin: Harbin Institute of Technology, 2015: 10-17 (in Chinese).
|
17 |
MATUNAGA S, KANZAWA T, OHKAMI Y. Rotational motion-damper for the capture of an uncontrolled floating satellite[J]. Control Engineering Practice, 2001, 9(2): 199-205.
|
18 |
DAI H H, JING X J, WANG Y, et al. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system[J]. Mechanical Systems and Signal Processing, 2018, 105: 214-240.
|
19 |
DAI H H, JING X J, SUN C, et al. Accurate modeling and analysis of a bio-inspired isolation system: with application to on-orbit capture[J]. Mechanical Systems and Signal Processing, 2018, 109: 111-133.
|
20 |
WANG X, YUE X K, DAI H H, et al. Vibration suppression for post-capture spacecraft via a novel bio-inspired Stewart isolation system[J]. Acta Astronautica, 2020, 168: 1-22.
|
21 |
王鑫, 岳晓奎, 代洪华, 等. 在轨服务中的仿生抗冲击结构研究[J]. 宇航学报, 2020, 41(8): 1000-1007.
|
|
WANG X, YUE X K, DAI H H, et al. Research on bio-inspired anti-impact structure in on-orbit servicing[J]. Journal of Astronautics, 2020,41(8): 1000-1007 (in Chinese).
|
22 |
王晓雪. 非合作目标对接捕获机构的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009: 9-10.
|
|
WANG X X. Research on the docking and capturing mechanism for the uncooperative target satellites[D]. Harbin: Harbin Institute of Technology, 2009: 9-10 (in Chinese).
|
23 |
张禹. 卫星喷管对接装置及捕获策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2016: 21-50.
|
|
ZHANG Y. Research on satellite nozzle docking device and capture strategy[D]. Harbin: Harbin Institute of Technology, 2016: 21-50 (in Chinese).
|
24 |
HIRZINGER G, LANDZETTEL K, BRUNNER B, et al. DLR’s robotics technologies for on-orbit servicing[J]. Advanced Robotics, 2004, 18(2): 139-174.
|
25 |
HIRZINGER G, BRUNNER B, LANDZETTEL K, et al. Space robotics—DLR’s telerobotic concepts, lightweight arms and articulated hands[J]. Autonomous Robots, 2003, 14(2): 127-145.
|