ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (9): 327329-327329.doi: 10.7527/S1000-6893.2022.27329
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Lu ZHUANG1, Zhong LU1(), Haijing SONG2, Li DONG3, Yuting WU1, Jia ZHOU4
Received:
2022-04-26
Revised:
2022-06-15
Accepted:
2022-09-23
Online:
2022-10-09
Published:
2022-09-30
Contact:
Zhong LU
E-mail:luzhong@nuaa.edu.cn
Supported by:
CLC Number:
Lu ZHUANG, Zhong LU, Haijing SONG, Li DONG, Yuting WU, Jia ZHOU. Safety analysis for fly⁃by⁃wire system based on fault injection model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 327329-327329.
Table 1
Typical fault modes and descriptions
序号 | 故障模式 | 描述 | 数学模型 | 使用的Simulink模块 |
---|---|---|---|---|
1 | 无响应 | 无论输入为何种形式输出始终为0 | Constant模块:生成0信号 | |
2 | 随机输出 | 输出数值在一定范围内的随机信号 | Random模块:生成随机数 | |
3 | 延迟 | 输出延迟一定的时间 | Delay模块:延迟时间量的输入 | |
4 | 卡滞 | 输出卡滞在某一数值 | Memory模块:输出上一时间步的输入 | |
5 | 舵面松浮 | 舵面随气动力处于松浮状态 | 若干Constant模块:不同状态舵面松浮时的角度 | |
6 | 增益改变 | 输出信号增益发生变化 | Gain模块:信号放大/缩小 | |
7 | 信号漂移 | 实际信号与测量信号之间的恒定偏移/误差 | Constant模块:设置漂移量 Add模块:信号值的加减 |
Table 2
Failure modes of each component
部件序号 | 部件名称 | 故障模式序号 |
---|---|---|
A | PFC1指令单元 | 1, 2, 3, 4 |
B | PFC2指令单元 | 1, 2, 3, 4 |
C | PFC1监控单元 | 1, 2, 3, 4 |
D | PFC2监控单元 | 1, 2, 3, 4 |
E | LAA1 | 1, 4 |
F | LAA2 | 1, 4 |
G | RAA1 | 1, 4 |
H | RAA2 | 1, 4 |
I | RA1 | 1, 4 |
J | RA2 | 1, 4 |
K | 左副翼 | 4, 5 |
L | 右副翼 | 4, 5 |
M | 方向舵 | 4, 5 |
N | 左副翼位置传感器1 | 1, 6, 7 |
O | 左副翼位置传感器2 | 1, 6, 7 |
P | 左副翼位置传感器3 | 1, 6, 7 |
Q | 右副翼位置传感器1 | 1, 6, 7 |
R | 右副翼位置传感器2 | 1, 6, 7 |
S | 右副翼位置传感器3 | 1, 6, 7 |
T | 方向舵位置传感器1 | 1, 6, 7 |
U | 方向舵位置传感器2 | 1, 6, 7 |
V | 方向舵位置传感器3 | 1, 6, 7 |
W | IMU1 | 1, 6, 7 |
X | IMU2 | 1, 6, 7 |
Y | IMU3 | 1, 6, 7 |
Table 4
Piece⁃part FMEA worksheet for command unit of PFC1
部件序号 | 部件 名称 | 故障 模式 | 故障率/10-7 | 飞行阶段 | 局部影响 | 对高一层次的影响 | 最终影响 | 检测方法 |
---|---|---|---|---|---|---|---|---|
A | PFC1指令单元 | 无响应 | 2 | 爬升,巡航,下降 | PFC1指令单元输出为零 | PFC1监控单元抑制PFC1指令单元的输出,并向PFC2发送重配置信号 | 系统响应正常 | 机内测试仿真 |
A | PFC1指令单元 | 随机输出 | 1 | 爬升,巡航,下降 | PFC1指令单元随机输出 | PFC1监控单元抑制PFC1指令单元的输出,并向PFC2发送重配置信号 | 系统响应正常 | 机内测试仿真 |
A | PFC1指令单元 | 延迟 | 1 | 爬升,巡航,下降 | PFC1指令单元输出延迟一段时间 | PFC1监控单元抑制PFC1指令单元的输出,并向PFC2发送重配置信号 | 系统响应正常 | 机内测试仿真 |
A | PFC1指令单元 | 卡滞 | 1 | 爬升,巡航,下降 | PFC1指令单元输出卡滞在之前的数值 | PFC1监控单元抑制PFC1指令单元的输出,并向PFC2发送重配置信号 | 系统响应正常 | 机内测试仿真 |
1 | 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2011: 129-130. |
Civil Aviation Administration of China. Airworthiness standards for transport aircraft: CCAR-25-R4 [S]. Beijing:Civil Aviation Administration of China, 2011: 129-130 (in Chinese). | |
2 | Society of Automotive Engineers International. Certification considerations for highly-integrated or complex aircraft systems: ARP4754A [S]. Warrendale: Society of Automotive Engineers, 2010: 1-12. |
3 | Society of Automotive Engineers International. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment: ARP4761 [S]. Warrendale: Society of Automotive Engineers, 1996: 4-6. |
4 | 胡晓义, 王如平, 王鑫, 等. 基于模型的复杂系统安全性和可靠性分析技术发展综述[J]. 航空学报, 2020, 41(6): 523436. |
HU X Y, WANG R P, WANG X, et al. Recent development of safety and reliability analysis technology for model-based complex system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523436 (in Chinese). | |
5 | 陈磊, 焦健, 赵廷弟. 基于模型的复杂系统安全分析综述[J]. 系统工程与电子技术, 2017, 39(6): 1287-1291. |
CHEN L, JIAO J, ZHAO T D. Review for model-based safety analysis of complex safety-critical system[J]. Systems Engineering and Electronics, 2017, 39(6): 1287-1291 (in Chinese). | |
6 | LIU J T, WANG H W, ZHENG W. A safety modelling method for high-speed train control systems based on UML extension[C]∥2020 Chinese Automation Congress. Piscataway: IEEE Press, 2020: 317-321. |
7 | WANG H L, ZHONG D M, ZHAO T D, et al. Integrating model checking with SysML in complex system safety analysis[J]. IEEE Access, 2019, 7: 16561-16571. |
8 | STEWART D. AADL-Based safety analysis using formal methods applied to aircraft digital systems[J]. Reliability Engineering & System Safety, 2021, 213: 107649. |
9 | WEI X M. AADL-based safety analysis approaches for safety-critical systems[C]∥2019 12th IEEE Conference on Software Testing, Validation and Verification. Piscataway: IEEE Press, 2019: 481-482. |
10 | ZHANG F K, DONG H Y. Research on formal modeling and safety analysis method of head-up display system for civil aircraft based on AltaRica[C]∥2019 3rd International Conference on Circuits, System and Simulation. Piscataway: IEEE Press, 2019: 116-120. |
11 | LI Z, JIANG Z Q, WANG D S, et al. System modeling and fault tree analysis based on AltaRica[J]. IEEE Access, 8: 168879-168897. |
12 | LU Z, ZHANG Z W, ZHUANG L, et al. Reliability model of the fly-by-wire system based on stochastic Petri net[J]. International Journal of Aerospace Engineering, 2019, 2019: 2124836. |
13 | WU D H. Formal model-based quantitative safety analysis using timed coloured Petri nets[J]. Reliability Engineering & System Safety, 2018, 176: 62-79. |
14 | SINGH L K, RAJPUT H. Dependability analysis of safety critical real-time systems by using Petri nets[J]. IEEE Transactions on Control Systems Technology, 2018, 26(2): 415-426. |
15 | SAVELEV A S, EROSHCHENKOV E V, NERETIN E S, et al. Finite-state machine method in the safety assessment process using Stateflow diagrams[J]. Journal of Physics: Conference Series, 2021, 1958(1): 012034. |
16 | CARRILLO M, ESTIVILL-CASTRO V, ROSENBLUETH D. Model-to-model transformations for efficient time-domain verification of concurrent models by NuSMV modules[C]∥ Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development. Science and Technology Publications, 2020: 287-298. |
17 | ZHONG D M, SUN R, GONG H Y, et al. System-theoretic process analysis based on SysML/MARTE and NuSMV[J]. Applied Sciences, 2022, 12(3): 1671. |
18 | DOMÍNGUEZ-GARCÍA A D. An integrated methodology for the dynamic performance and reliability evaluation of fault-tolerant systems[J]. Reliability Engineering & System Safety, 2008, 93(11): 1628-1649. |
19 | SHAO N, ZHANG S G, LIANG H. Model-based safety analysis of a control system using Simulink and Simscape extended models[C]∥ 2017 3rd International Conference on Mechanical, Electronic and Information Technology Engineering. Les Ulis: EDP Sciences, 2017, 139: 00219. |
20 | KIRAN R, JEPPU Y. Autopilot mode transitions and voter logic validation using model checking: A design study of formal methods[M]∥Lecture Notes in Electrical Engineering. Berlin: Springer, 2021: 263-281. |
21 | PING M L, ZHANG X B, GAO Z H, et al. Simulation model development of three-stage synchronous generator for aircraft power systems based on modelica[C]∥2016 19th International Conference on Electrical Machines and Systems. Piscataway: IEEE Press, 2016: 1-6. |
22 | MCRUER D T, MYERS T T, THOMPSON P M. Literal singular-value-based flight control system design techniques[J]. Journal of Guidance, Control, and Dynamics, 1989, 12(6): 913-919. |
23 | DOMINGUEZ-GARCIA A D. An integrated methodology for the performance and reliability evaluation of fault-tolerant systems[D]. Cambridge: Massachusetts Institute of Technology, 2007: 103-122. |
24 | DOMINGUEZ-GARCIA A D, KASSAKIAN J G, SCHINDALL J E, et al. On the use of behavioral models for the integrated performance and reliability evaluation of fault-tolerant avionics systems[C]∥2006 IEEE/AIAA 25th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2006: 1-14. |
25 | LU Z, ZHUANG L, DONG L, et al. Model-based safety analysis for the fly-by-wire system by using Monte Carlo simulation[J]. Processes, 2020, 8(1): 90. |
26 | BABCOCK P S, ROSCH G, ZINCHUK J J. An automated environment for optimizing fault-tolerant systems designs[C]∥Annual Reliability and Maintainability Symposium. Piscataway: IEEE Press, 1991: 360-367. |
27 | 董力. 基于模型的飞行控制系统安全性分析方法研究[D]. 南京: 南京航空航天大学, 2020: 51-53. |
DONG L. Research on model-based safety analysis of flight control system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 51-53 (in Chinese). |
[1] | LIU Chang, JIANG Yongping, MA Chunyan, ZHANG Tao. Formal verification technology for AADL models based on NuSMV [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 325196-325196. |
[2] | LIU Haigang, LIU Liang, WANG Peng, ZHOU Wei. Model based simulation and analysis of energy optimization characteristics of more-electric aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525801-525801. |
[3] | YANG Xuan, WEI Xiaoyong, CUI Delong. Bus interface strategy in flight control system for carrier-based aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(4): 622283-622283. |
[4] | SHI Zhongke. Challenge of control theory in the presence of high performance aircraft development [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(8): 2717-2734. |
[5] | LU Yuping, YANG Chaoxing, LIU Yangyang. A Survey of Modeling and Control Technologies for Aerial Refueling System [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(9): 2375-2389. |
[6] | GUO Jianguo, ZHOU Jun. Review of the Control of Low Dynamic Vehicles in Near Space [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(2): 320-331. |
[7] | YE Hui, CHEN Mou, WU Qingxian. Envelope Protection Control for Maneuver Flight Based on Multi-regulator Sliding Mode Control Switch Approach [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(12): 3358-3370. |
[8] | ZHOU Kun, WANG Lixin, TAN Xiangsheng. Handling Qualities Assessment of Short Period Mode for Fly-by-Wire Passenger Airliner with Relaxed Static Stability Design [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(9): 1606-1615. |
[9] | ZHOU Qing, LIU Bin, YU Zhengwei, FENG Shiyu. A Framework of Simulation Testing Environment for Integrated Modular Avionics Software [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, (4): 722-733. |
[10] | CAI Lin, ZHANG Ling, YANG Shanshui, WANG Li. Reliability Assessment and Analysis of Large Aircraft Power Distribution Systems [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(8): 1488-1496. |
[11] | GONG Lei, ZHANG Shuguang, LIU Xiaofeng, QIU Tian. Research on Hazard Identification of Turbo-fan Engine Digital Control Systems Based on Functional Hazard Analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(12): 2194-2203. |
[12] | LI Tianmei, HU Changhua, ZHOU Xin. Fault Injection Method Resulting from Inaccessible Location Fault Based on Fault Propagation Characteristics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(12): 2277-2286. |
[13] | Meng Jie;Xu Haojun;Zhang Jiankang. A Comparison of Feedback and Foreback Schemes to Prevent Category Ⅱ PIO [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(9): 1701-1707. |
[14] | Lu Yuping;He Zhen. A Survey of Morphing Aircraft Control Systems [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(10): 1906-1911. |
[15] | Zhang Dengfeng;Gao Jinyuan. Multi-objective Optimization Design of Integral Aircraft Control Effector Parameters and Flight Control Law Based on MDO Technique [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 30(6): 1626-1633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341