[1] Phillips W H. Effect of rolling on longitudinal and directional stability, NASA TN-1627[R]. Washington, D.C.: NASA,1948.
[2] Mehra R K, Kessel W C, Cnrroll J V. Global stability and control analysis of aircraft at high angle of attack, annual technical report 1, ONR-CR215-248-(1)[R]. Cambridge: Scientific Systems Inc., 1977.
[3] Liefer R K. Fighter agility metrics, AD-A224-477[R]. Virginia: ASTIA, 1990.
[4] Jahnke C C. On the roll-coupling instabilities of high performance aircraft[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 1998, 356(1745): 2223-2239.
[5] Goman M G, Zagainov G I, Khramtsovsky A V. Application of bifurcation method to nonlinear flight dynamics problem[J]. Progress in Aerospace Sciences, 1997, 33(9-10): 539-586.
[6] Modi A, Ananthkrishnan N. Multiple attractors in inertia-coupled velocity-vector roll maneuvers of Airplanes[J]. Journal of Aircraft, 1998, 35(4): 659-661.
[7] Liebst B S, Nolan R C. Method for the prediction of the onset of wing rock[J]. Journal of Aircraft, 1994, 31(6): 1419-1424.
[8] Go T H, Ramnath R V. Analytical theory of three degree-of-freedom aircraft wing rock[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 657-664.
[9] Hsu C H, Lan C E. Theory of wing rock[J]. Journal of Aircraft, 1985, 22(10): 920-924.
[10] Ericsson L E. Wing rock analysis of slender delta wings, review and extension[J]. Journal of Aircraft, 1995, 32(6): 1221-1226.
[11] Arena A S J, Nelson R C. The effect of asymmetric vortex wake characteristics on a slender delta wing undergoing wing-rock motion,AIAA-89-3348-CP[R]. Reston: AIAA, 1989.
[12] Morris S L, Ward D T. A video-based experimental investigation of wing rock, AD-A218-244[R]. Virginia: ASTIA, 1989.
[13] Hall R M, Frate J H D. Interaction between forebody and wing vortices-a water-tunnel study, AFWAL-TM-85[R]. Riverside: Air Force Wright Aeronautical Lab (AFWAL), 1986.
[14] Takashi M, Shigeru Y, Yoshiaki N. The effect of leading-edge profile of self-induction oscillation of 45 degree delta wings, AIAA-2000-4004[R]. Reston: AIAA, 2000.
[15] Owens B O, McConnrll J K, Brandon J M, et al. Transonic free-to-roll analysis of the F/A-18E and F-35 configurations, AIAA-2004-5053[R]. Reston: AIAA, 2004.
[16] Elzebda J M, Mook D T, Nayfeh A H. Influence of pitching motion on subsonic wing rock of slender delta wings[J]. Journal of Aircraft, 1989, 26(6): 503-508.
[17] Elzedbda J M, Nayfeh A H, Mook D T. Development of an analytical model of wing rock for slender delta wings[J]. Journal of Aircraft, 1989, 26(8): 737-743.
[18] Nayfeh A H, Elzedbda J M, Mook D T. Analytical study of the subsonic wing-rock phenomenon for slender delta wings[J]. Journal of Aircraft, 1989, 26(9): 805-809.
[19] Konstadinopoulos P, Mook D T, Nayfeh A H. Subsonic wing rock of slender delta wings[J]. Journal of Aircraft, 1985, 22(3): 223-228.
[20] Elzebda J M, Mook D T, Nayfeh A H. The influence of an additional degree of freedom on subsonic wing rock of slender delta wings[C]//25th Aerospace Sciences Meeting, Reston: AIAA, 1987.
[21] Go T H, Ramnath R V. Analysis of the two-degree-of-freedom wing rock in advanced aircraft[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(2): 324-333.
[22] Ross A J. Investigation of nonlinear motion experienced on a slender-wing research[J]. Journal of Aircraft, 1972, 9(9): 625-631.
[23] Go T H, Ramnath R V. An analytical approach to the aircraft wing rock dynamics, AIAA-2001-4426[R]. Reston: AIAA, 2001.
[24] Jahnke C C, Culick F E C. Application of dynamical systems theory to the high angle of attack dynamics of the F-14, AIAA-90-0221[R]. Reston: AIAA, 1990.
[25] Liebst B S, Nolan R C. A simplified wing rock prediction method, AIAA-93-3662-CP[R]. Reston: AIAA, 1993.
[26] Nho K, Agarwal R K. Application of fuzzy logic to wing rock motion control, AIAA-98-0497[R]. Reston: AIAA, 1998.
[27] Tewari A. Nonlinear optimal control of wing rock including yawing motion, AIAA-2000-4251[R]. Reston: AIAA, 2000.
[28] Joshi S V, Sreenatha A G, Chandrasekhar J. Suppression of wing rock of slender delta wings using a single neuron controller[J]. IEEE Transactions on Control Systems Technology, 1998, 6(5): 671-677.
[29] Shue S P, Agarwal R K. Nonlinear H∞ method for control of wing rock motions[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(1): 60-68.
[30] Cao C Y, Hovakimyan N. Application of L1 adaptive controller to wing rock, AIAA-2006-6426[R]. Reston: AIAA, 2006.
[31] Pietrucha J, Zlocka M, Sibilski K, et al. Comparative analysis of wing rock control, AIAA-2009-56[R]. Reston: AIAA, 2009.
[32] Liebst B S, Witt B R D. Wing rock suppression in the F-15 aircraft, AIAA-97-3719[R]. Reston: AIAA, 1997.
[33] Garrard W L, Jordan J M. Design of nonlinear automatic flight control systems[J]. Automatica, 1977, 13(5): 497-505.
[34] Montgomery R C, Moul M T. Analysis of deep-stall characteristic of T-tailed aircraft configuration and some recovery procedures[J].Journal of Aircraft, 1966, 3(6): 562-566
[35] Powers B G. A Parametric study of factors influencing the deep-stall pitch-up characteristics of T-tail transport aircraft. NASA TN D-3370[R]. Washington, D.C.: NASA, 1966.
[36] Lee C S, Pang W W, Srigrarom S. Classification of aircraft by abnormal behavior of lift curves at low reynolds number, AIAA-2006-3179[R]. Reston: AIAA, 2006.
[37] Meznarsie V F, Gross L W. Experimental investigation of a wing with control midspan flow separation[J]. Journal of Aircraft, 1982, 19(6): 435-441.
[38] Gregory N, Quincey V G, Hall D J. Progress report on observation of three-dimensional flow patterns obtained during stall development on aerofoils and on the problem of measuring two-dimensional characteristics, NPL Aero Report-1309[R]. Middlesex: NPL, 1970.
[39] Mehra R K, Carroll J V. Bifurcation analysis of aircraft high angle-of-attack flight dynamics, AIAA-1980-1599[R]. Reston: AIAA, 1980.
[40] Carroll J V, Mehra R K. Bifurcation analysis of nonlinear aircraft dynamics[J]. Journal of Guidance, Control, and Dynamics, 1982, 5(5): 529-536.
[41] Chen Y S, Liung A Y T. Bifucation and chaos in engineering[M]. New York: Springer, 1998: 154-261.
[42] Sibilski K. Problems of manoeuvring at post-critical angels of attack continuation and bifurcation methods approach, AIAA-2003-0395[R]. Reston: AIAA, 2003.
[43] Liaw D C, Song C C. Analysis of longitudinal flight dynamics: a bifurcation-theoretic approach[J]. Journal of Guidance, Control, and Dynamics, 2012, 24(1): 109-116.
[44] Cochran J E J, Ho C S. Stability of aircraft motion in critical cases[J]. Journal of Guidance, Control, and Dynamics, 1983, 6(4): 272-279.
[45] Gates O B, Minka K. Note on a criterion for severity of roll-induced instability[J]. Journal of the Aerospace Sciences, 1959, 26(5): 287-290.
[46] Young J W, Schy A A, Johnson K G. Pseudo steady-state analysis of nonlinear aircraft maneuvers, NASA-TP-1758-C1[R]. Washington, D.C.: NASA, 1980.
[47] Thomas S, Bajpai G, Kwatny H, et al. Nonlinear dynamics, stability and bifurcation in aircraft: simulation and analysis tools, AIAA-2005-6428[R]. Reston: AIAA, 2005.
[48] Guicheteau P H. Bifurcations theory in flight dynamics an application to a real combat aircraft, ONERA-TAP-90-116[R]. Sigle: INIST, 1990.
[49] Avanzini G, Matteis G D. Bifurcation analysis of a highly augmented aircraft model[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 754-759.
[50] Marusak A, Pietrucha J, Sibilski K. Prediction of aircraft critical flight regimes using continuation and bifurcation methods, AIAA-2000-0976[R]. Reston: AIAA, 2000.
[51] Lina L J, Moul M T. A simulator study of T-tail aircraft in deep stall conditions, AIAA-1965-0781[R]. Reston: AIAA, 1965.
[52] Beh H, Bunt R V D,Fischer B. High angle of attack approach and landing control law design for the X-31A, AIAA-2002-0247[R]. Reston: AIAA, 2002.
[53] Atesoglu Ö, Özgören M K. High-α flight maneuverability enhancement of a twin engine fighter-bomber aircraft for air combat superiority using thrust-vectoring control, AIAA-2006-6056[R]. Reston: AIAA, 2006.
[54] Jouannet C, Krus P. Modelling of high angle of attack aerodynamic state-space approach, AIAA-2006-3845[R]. Reston: AIAA, 2006.
[55] Forsythe J R, Strang W Z, Squires K D. Six degree of freedom computation of the f-15e entering a spin, AIAA-2006-858[R]. Reston: AIAA, 2006.
[56] Michal T, Babcock D, Oser M, et al. BCFD unstructured-grid predictions on the F-16 XL (CAWAPI) aircraft, AIAA-2007-679[R]. Reston: AIAA, 2007.
[57] Green B E. Computational prediction of nose-down control for the pre-production F/A-18E at high angle of attack[J]. Journal of Aircraft, 2008, 45(5): 1661-1668.
[58] Park M Y, Park H U, Park S H, et al. Computational investigation of asymmetric vortical flow characteristics at high angle of attack, AIAA-2007-6727[R]. Reston: AIAA, 2007.
[59] Roberts L T, Strom T H. All-axis control of aircraft in deep stall: United States Patent, US 4099687[P]. 1978-07-11.
[60] Goman M, Fedulova E, Khramtsovsky A V. Maximum stability region design for unstable aircraft with control constrains, AIAA-1996-3910[R]. Reston: AIAA, 1996.
[61] Lowenberg M H. Bifucation analysis as a tool for post-departure stability enhancement, AIAA-1997-3716[R]. Reston: AIAA, 1997.
[62] Littleboy D M, Smith P R. Using bifurcation method to aid nonlinear dynamic inversion control law design[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(4): 632-638.
[63] Gao H, Wang Z G, Zhang S G. A study of wing rock[J]. Flight Dynamics, 1989(3): 1-10 (in Chinese). 高浩, 王忠俊, 张曙光. 机翼摇晃运动研究[J]. 飞行力学, 1989(3): 1-10.
[64] Chen Y L, Shen H L, Liu C. Prediction and suppression of wing-rock[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3): 276-280 (in Chinese). 陈永亮, 沈宏良, 刘昶. 机翼摇晃预测与抑制[J]. 航空学报, 2005, 26(3): 276-280.
[65] Zhou Y X, Liu C, Yin J H. The simulation study of deep-stall characteristics for RSS airplane[J]. Flight Dynamics, 1996, 14(4): 19-24 (in Chinese). 周欲晓, 刘昶, 尹江辉. RSS飞机深失速仿真研究[J]. 飞行力学, 1996, 14(4): 19-24.
[66] Yu Y J,Yin J H, Liu C. Analysis of deep stall corridor characteristics for RSS aircraft[J]. Flight Dynamics, 1998, 16(2): 1-6 (in Chinese). 余勇军, 尹江辉, 刘昶. RSS飞机深失速走廊特性分析[J]. 飞行力学, 1998, 16(2): 1-6.
[67] Zheng X F, Liu C, Shi Z W. Study of deep-stall characteristics of T-tailed aircraft[J]. Flight Dynamics, 1996, 14(3): 39-43 (in Chinese). 郑贤芬, 刘昶, 史志伟. "T"型尾翼飞机的深失速特性研究[J]. 飞行力学, 1996, 14(3): 39-43.
[68] Cheng Z Y. Analysis of stall behavior for Y7-200B aircraft[J]. Flight Dynamics, 1993, 11(2): 64-72 (in Chinese). 程泽荫. Y7-200B飞机失速特性分析[J]. 飞行力学, 1993, 11(2): 64-72.
[69] Cheng Z Y. The study of control and stability characteristics for Y7-200B/A aircraft[J]. Flight Dynamics, 1995, 13(4): 56-64 (in Chinese). 程泽荫. Y7-200B/A飞机操稳特性分析[J]. 飞行力学, 1995, 13(4): 56-64.
[70] Wang D H, Su B, Wang Z G. Analysis of global stability and nonlinear control for a fighter configuration[J]. Acta Aerodynamica Sinica, 2002, 20(2): 192-197 (in Chinese). 王大海, 苏彬, 王忠俊. 飞机的全局稳定性分析和非线性控制[J]. 空气动力学学报, 2002, 20(2): 192-197.
[71] Li K, Fang Z P. High angle-of-attack control law design based on global stability analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(6): 516-519 (in Chinese). 黎康, 方振平. 基于全局稳定性分析的大迎角飞控系统设计[J]. 北京航空航天大学学报, 2004, 30(6): 516-519.
[72] Li K, Fang Z P. Application of bifurcation analysis to aircraft nonlinear dynamics[J]. Flight Dynamics, 2003, 21(4): 5-8 (in Chinese). 黎康, 方振平. 分叉分析在飞机非线性动力学中的应用[J]. 飞行力学, 2003, 21(4): 5-8.
[73] Zanotti A, Nilifard R, Gibertini G, et al. Assessment of 2D/3D numerical modeling for deep dynamic stall experiments[J]. Journal of Fluids and Structures, 2014, 51: 97-115.
[74] Wang S Y, Ingham D B, Ma L, et al. Turbulence modeling of deep dynamic stall at relatively low Reynolds number[J]. Journal of Fluids and Structures, 2012, 33: 191-209.
[75] Visbal M R. Numerical investigation of deep dynamic stall of a plunging airfoil[J]. AIAA Journal, 2011, 49(10): 2152-2170
[76] Shi Z K, Fan L. Bifurcation analysis of polynomial models for longitudinal motion at high angle of attack[J]. Chinese Journal of Aeronautics, 2013, 26(1): 151-160.
[77] Fan L, Shi Z K. Stability and bifurcation analysis of nonlinear model for longitudinal motion with time delay[J]. Control and Decision, 2013, 28(7): 985-990 (in Chinese). 范丽, 史忠科. 具有时滞的非线性纵向飞行模型稳定性和分支分析[J]. 控制与决策, 2013, 28(7): 985-990.
[78] Xin Q, Shi Z K. Bifurcation analysis and stability design for aircraft longitudinal motion with high angle of attack[J]. Chinese Journal of Aeronautics, 2015, 28(1): 250-259.
[79] Shi Z K, Wu F X. Robust identification method for nonlinear model structures and its application to high-performance aircraft[J]. International Journal of Systems Science, 2013, 44(6): 1040-1051.
[80] Zhang H Y, Shi Z K.Variable structure control of catastrophic course in airdropping heavy cargo[J]. Chinese Journal of Aeronautics, 2009, 22(5): 520-527.
[81] Chen J, Shi Z K Aircraft modeling and simulation with cargo moving inside[J]. Chinese Journal of Aeronautics, 2009, 22(2): 191-197.
[82] Chen J, Shi Z K. Flight controller design of transport airdrop[J]. Chinese Journal of Aeronautics, 2011, 24(5): 600-606.
[83] Feng Y L, Shi Z K, Tang W. Dynamics modeling and control of large transport aircraft in heavy cargo extraction[J]. Journal of Control Theory and Applications, 2011, 9(2): 231-236.
[84] Xin Q, Shi Z K. Design of three dimensional nonlinear controller for transport aircraft airdropping heavy cargoes at extremely low-altitude under cross wind[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1941-1956 (in Chinese). 辛琪, 史忠科. 运输机超低空重装空投抗侧风三维非线性控制律设计[J]. 航空学报, 2014, 35(7): 1941-1956.
[85] Hancock G J. Theory of optimum aerodynamic shapes[J]. Nature, 1966, 102(5031): 53-54.
[86] Gruschka H D, Borchers I U, Coble J G. Aerodynamic noise produced by a gliding owl[J]. Nature, 1971, 233(5319): 409-411.
[87] Christopher J.C. Aerodynamic properties of insert wing section and a smooth aerofoil compared[J]. Nature, 1975, 258(13): 141-142.
[88] Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422): 1954-1960.
[89] Fry S N, Sayaman R, Dickinson M H. The aerodynamics of free-flight maneuvers in drosophila[J]. Science, 2003, 300(5618): 495-498.
[90] Dial K P. Wing-assisted incline running and the evolution of flight[J]. Science, 2003, 299(5605): 402-404.
[91] Muijres F T. Leading-edge vortex improves lift in slow-flying bats[J]. Science, 2008, 319(5867): 1250-1253.
[92] Papatheou E, Manson G, Barthorpe R J, et al. The use of pseudo-faults for damage location in SHM: An experimental investigation on a piper tomahawk aircraft wing[J]. Journal of Sound and Vibration, 2014, 333(3): 971-990.
[93] Lee S, Park W, Jung S. Fault detection of aircraft system with random forest algorithm and similarity measure[J]. The Scientific World Journal, 2014. DOI: http://dx.doi.org/10.1155/2014/727359 (in Press).
[94] Martinez A, Sanchez L, Couso I. Interval-valued blind source separation applied to ai-based prognostic fault detection of aircraft engines[J]. Journal of Multiple-Valued Logic and Soft Computing, 2014, 22(1-2): 151-166.
[95] Liu X, Liu Z. A hybrid approach for aircraft fault diagnosis based on fault inference and fault identification[J]. Aeronautical Journal, 2014, 118(1199): 81-97.
[96] Nayebpanah N, Rodrigues L, Zhang Y M. Fault tolerant control for partial loss of control authority in aircraft using piecewise affine slab models[J]. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2013, 350(9): 2494-2508.
[97] Loza A F D, Cieslak J, Henry D, et al. Sensor fault diagnosis using a non-homogeneous high-order sliding mode observer with application to a transport aircraft[J]. IET Control Theory and Applications, 2015, 9(4SI): 598-607.
[98] Yaramasu A, Cao Y N, Liu G J, et al. Aircraft electric system intermittent arc fault detection and location[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 40-51.
[99] Shi Z K. Aircraft fault diagnosis and tolerant control based on three-dimensional motion model, China, ZL201310095792.0[P]. 2015-04-08 (in Chinese). 史忠科. 飞行器三维运动故障诊断和容错控制方法, 中国: ZL201310095792.0[P]. 2015-04-08.
[100] Madany Y M, Elkamchouchi H M, Ahmed M M. Modelling and simulation of robust navigation for unmanned air systems (UASs) based on integration of multiple sensors fusion architecture[C]//UKSim-AMSS 7th European Modelling Symposium on Computer Modelling and Simulation, 2013: 719-724.
[101] Xu Y, Sun W, Li P. A Miniature integrated navigation system for rotary-wing unmanned aerial vehicles[J]. International Journal of Aerospace Engineering, 2014: 748940.
[102] Figueiroa M, Moutinho A, Azinheira J R, et al. Attitude estimation in SO (3): a comparative UAV case study[C]//IEEE International Conference on Autonomous Robot Systems and Competitions. Piscataway, NJ: IEEE Press, 2014: 79-84.
[103] Grelsson B, Felsberg M. Probabilistic hough voting for attitude estimation from aerial fisheye images[J]. Lecture Notes in Computer Science, 2013: 478-488.
[104] Yigit H, Yilmaz G. Development of a GPU accelerated terrain referenced UAV localization and navigation algorithm[J]. Journal of Intelligent & Robotic Systems, 2013, 70(1-4): 477-489.
[105] Chee K Y, Zhong Z W. Control, navigation and collision avoidance for an unmanned aerial vehicle[J]. Sensors and Actuators A: Physical, 2013, 190(1): 66-76.
[106] Zhang L, Shi Z, Zhong Y. Attitude estimation of 3-DOF lab helicopter based on optical flow[C]//33rd Chinese Control Conference, 2014: 8536-8541.
[107] Zsedrovits T, Bauer P, Zarandy A, et al. Error analysis of algorithms for camera rotation calculation in GPS/IMU/camera fusion for UAV sense and avoid systems[C]//International Conference on Unmanned Aircraft Systems, 2014: 864-875.
[108] Ding Y R, Hsiao F B. Application of a single-antenna gps-based attitude estimation on the stability control of a small unmanned aerial vehicle[J]. Journal of Aerospace Engineering, 2013, 26(4): 768-785.
[109] Marinho M A M, Ferreira R S J, Costa J P C L D, et al. Antenna array based positioning scheme for unmanned aerial vehicles[C]//17th International ITG Workshop on Smart Antennas, 2013: 1-6.
[110] Liu K, Da Costa J P C L D, So H C, et al. 3-D unitary ESPRIT: Accurate attitude estimation for unmanned aerial vehicles with a hexagon-shaped ESPAR array[J]. Digital Signal Processing, 2013, 23(3): 701-711. |