ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (10): 527481-527481.doi: 10.7527/S1000-6893.2022.27481
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
SHANG Yong1, FENG Yang1, LIU Qiaomu1,2, WANG Junwu3,4, YANG Huijun1, RU Yi1, ZHANG Heng1, ZHAO Wenyue1, PEI Yanling1, LI Shusuo3, GONG Shengkai1
Received:
2022-05-20
Revised:
2022-06-05
Published:
2022-07-14
Supported by:
CLC Number:
SHANG Yong, FENG Yang, LIU Qiaomu, WANG Junwu, YANG Huijun, RU Yi, ZHANG Heng, ZHAO Wenyue, PEI Yanling, LI Shusuo, GONG Shengkai. Research and application of large scientific facility on high-temperature structural materials and coatings of aero-engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527481-527481.
[1] 刘昌奎, 李楠, 赵文侠, 等. 航空材料组织与残余应力评价对中子散射与同步辐射技术的需求[J]. 失效分析与预防, 2019, 14(2):133-140. LIU C K, LI N, ZHAO W X, et al. Requirements of microstructure and residual stress evaluation of aeronautical materials for neutron scattering and synchrotron radiation techniques[J]. Failure Analysis and Prevention, 2019, 14(2):133-140(in Chinese). [2] KAYSSER W, ESSLINGER J, ABETZ V, et al. Research with neutron and synchrotron radiation on aerospace and automotive materials and components[J]. Advanced Engineering Materials, 2011, 13(8):637-657. [3] 麦振洪, 刘祖平, 高琛, 等. 同步辐射光源及其应用上[M]. 北京:科学出版社, 2013:169-172. MAI Z H, LIU Z P, GAO C, et al. Synchrotron radiation source and its application[M]. Beijing:Science Press, 2013:169-172(in Chinese). [4] HUSSEINI N S, KUMAH D P, YI J Z, et al. Mapping single-crystal dendritic microstructure and defects in nickel-base superalloys with synchrotron radiation[J]. Acta Materialia, 2008, 56(17):4715-4723. [5] AVESON J W, REINHART G, NGUYEN-THI H, et al. Dendrite bending during directional solidification[M]//Superalloys 2012. Hoboken:John Wiley & Sons, Inc., 2012:615-624. [6] AZEEM M A, LEE P D, PHILLION A B, et al. Revealing dendritic pattern formation in Ni, Fe and Co alloys using synchrotron tomography[J]. Acta Materialia, 2017, 128:241-248. [7] REINHART G, GRANGE D'ABOU-KHALIL L, et al. Impact of solute flow during directional solidification of a Ni-based alloy:In-situ and real-time X-radiography[J]. Acta Materialia, 2020, 194:68-79. [8] YAN Z R, TAN Q, HUANG H, et al. Phase evolution and thermal expansion behavior of a γ' precipitated Ni-based superalloy by synchrotron X-ray diffraction[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1):93-102. [9] DIOLOGENT F, CARON P, D'ALMEIDA T, et al. Temperature dependence of lattice mismatch and γ' volume fraction of a fourth-generation monocrystalline nickel-based superalloy[J]. International Journal of Materials Research, 2006, 97(8):1136-1142. [10] CHEN Y Q, PRASATH BABU R, SLATER T J A, et al. An investigation of diffusion-mediated cyclic coarsening and reversal coarsening in an advanced Ni-based superalloy[J]. Acta Materialia, 2016, 110:295-305. [11] ROBINSON J B, BROWN L D, JERVIS R, et al. A novel high-temperature furnace for combined in situ synchrotron X-ray diffraction and infrared thermal imaging to investigate the effects of thermal gradients upon the structure of ceramic materials[J]. Journal of Synchrotron Radiation, 2014, 21(5):1134-1139. [12] 王沿东, 李润光, 聂志华, 等. 中子/同步辐射衍射表征技术及其在工程材料研究中的应用[J]. 工程科学学报, 2022, 44(4):676-689. WANG Y D, LI R G, NIE Z H, et al. A review on the application of neutron and high-energy X-ray diffraction characterization methods in engineering materials[J]. Chinese Journal of Engineering, 2022, 44(4):676-689(in Chinese). [13] LIU X G, WANG L, LOU L H, et al. Effect of Mo addition on microstructural characteristics in a Re-containing single crystal superalloy[J]. Journal of Materials Science & Technology, 2015, 31(2):143-147. [14] BRUNO G, SCHUMACHER G, PINTO H C, et al. Measurement of the lattice misfit of the nickel-base superalloy SC16 by high-energy synchrotron radiation[J]. Metallurgical and Materials Transactions A, 2003, 34(2):193-197. [15] PINTO H C, BRUNO G. Formation and relaxation of coherency strain in the nickel-base superalloy SC16[J]. Journal of Synchrotron Radiation, 2003, 10(2):148-153. [16] JACQUES A, BASTIE P. The evolution of the lattice parameter mismatch of a nickel-based superalloy during a high-temperature creep test[J]. Philosophical Magazine, 2003, 83(26):3005-3027. [17] DIRAND L, CORMIER J, JACQUES A, et al. Measurement of the effective γ/γ' lattice mismatch during high temperature creep of Ni-based single crystal superalloy[J]. Materials Characterization, 2013, 77:32-46. [18] DIRAND L, JACQUES A, CHATEAU-CORNU J P, et al. Phase-specific high temperature creep behaviour of a pre-rafted Ni-based superalloy studied by X-ray synchrotron diffraction[J]. Philosophical Magazine, 2013, 93(10-12):1384-1412. [19] LE GRAVEREND J B, DIRAND L, JACQUES A, et al. In situ measurement of the γ/γ' lattice mismatch evolution of a nickel-based single-crystal superalloy during non-isothermal very high-temperature creep experiments[J]. Metallurgical and Materials Transactions A, 2012, 43A(11):3946-3951. [20] LE GRAVEREND J B, JACQUES A, CORMIER J, et al. Creep of a nickel-based single-crystal superalloy during very high-temperature jumps followed by synchrotron X-ray diffraction[J]. Acta Materialia, 2015, 84:65-79. [21] 李嘉荣, 谢洪吉, 韩梅, 等. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9):1195-1203. LI J R, XIE H J, HAN M, et al. High cycle fatigue behavior of second generation single crystal superalloy[J]. Acta Metallurgica Sinica, 2019, 55(9):1195-1203(in Chinese). [22] JIMÉNEZ M, LUDWIG W, GONZALEZ D, et al. The role of slip transfer at grain boundaries in the propagation of microstructurally short fatigue cracks in Ni-based superalloys[J]. Scripta Materialia, 2019, 162:261-265. [23] NARAGANI D, SANGID M D, SHADE P A, et al. Investigation of fatigue crack initiation from a non-metallic inclusion via high energy x-ray diffraction microscopy[J]. Acta Materialia, 2017, 137:71-84. [24] NARAGANI D P, SHADE P A, KENESEI P, et al. X-ray characterization of the micromechanical response ahead of a propagating small fatigue crack in a Ni-based superalloy[J]. Acta Materialia, 2019, 179:342-359. [25] LI H W, ZHUANG X L, LU S, et al. Hot deformation behavior and flow stress modeling of a novel CoNi-based wrought superalloy[J]. Journal of Alloys and Compounds, 2022, 894:162489. [26] FREUND L P, STARK A, PYCZAK F, et al. The grain boundary pinning effect of the μ phase in an advanced polycrystalline γ/γ' Co-base superalloy[J]. Journal of Alloys and Compounds, 2018, 753:333-342. [27] FREUND L P, STARK A, KIRCHMAYER A, et al. The effect of a grain boundary pinning B2 phase on polycrystalline Co-based superalloys with reduced density[J]. Metallurgical and Materials Transactions A, 2018, 49A(9):4070-4078. [28] WANG L, SONG L, STARK A, et al. Identification of Laves phases in a Zr or Hf containing γ-γ' Co-base superalloy[J]. Journal of Alloys and Compounds, 2019, 805:880-886. [29] FENG Y, DONG T S, LI G L, et al. The roles of stress in the thermal shock failure of YSZ TBCs before and after laser remelting[J]. Journal of Alloys and Compounds, 2020, 828:154417. [30] WEYANT C M, ALMER J, FABER K T. Through-thickness determination of phase composition and residual stresses in thermal barrier coatings using high-energy X-rays[J]. Acta Materialia, 2010, 58(3):943-951. [31] LEONI M, JONES R L, SCARDI P. Phase stability of scandia-yttria-stabilized zirconia TBCs[J]. Surface and Coatings Technology, 1998, 108-109:107-113. [32] STATHOPOULOS V, SADYKOV V, PAVLOVA S, et al. Design of functionally graded multilayer thermal barrier coatings for gas turbine application[J]. Surface & Coatings Technology, 2016, 295:20-28. [33] THORNTON J, WOOD C, KIMPTON J A, et al. Failure mechanisms of calcium magnesium aluminum silicate affected thermal barrier coatings[J]. Journal of the American Ceramic Society, 2017, 100(6):2679-2689. [34] NEGAMI M, HIBINO S, KAWANO A, et al. Development of highly durable thermal barrier coating by suppression of thermally grown oxide[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(8):082101. [35] REDDY A, HOVIS D B, HEUER A H, et al. In situ study of oxidation-induced growth strains in a model NiCrAlY bond-coat alloy[J].Oxidation of Metals, 2007, 67(3-4):153-177. [36] HAYASHI S, FORD S I, YOUNG D J, et al. α-NiPt(Al) and phase equilibria in the Ni-Al-Pt system at 1150℃[J]. Acta Materialia, 2005, 53(11):3319-3328. [37] PLANCHER E, GRAVIER P, CHAUVET E, et al. Tracking pores during solidification of a Ni-based superalloy using 4D synchrotron microtomography[J]. Acta Materialia, 2019, 181:1-9. [38] ZHU Q, CHEN G, WANG C J, et al. Tensile deformation and fracture behaviors of a nickel-based superalloy via in situ digital image correlation and synchrotron radiation X-ray tomography[J]. Materials, 2019, 12(15):2461. [39] ZHU Q, WANG C J, QIN H Y, et al. Effect of the grain size on the microtensile deformation and fracture behaviors of a nickel-based superalloy via EBSD and in situ synchrotron radiation X-ray tomography[J]. Materials Characterization, 2019, 156:109875. [40] ZHU Q, ZHANG L F, WANG C J, et al. Multi-dimensional revealing the influence mechanism of the δ phase on the tensile fracture behavior of a nickel-based superalloy on the mesoscopic scale[J]. Materials, 2022, 15(2):610. [41] LINK T, ZABLER S, EPISHIN A, et al. Synchrotron tomography of porosity in single-crystal nickel-base superalloys[J]. Materials Science and Engineering:A, 2006, 425(1-2):47-54. [42] BAI Y S, YANG S L, ZHU M Q, et al. Study on microstructure and fatigue properties of FGH96 nickel-based superalloy[J]. Materials, 2021, 14(21):6298. [43] TAN Y G, BULL D J, JIANG R, et al. Data rich imaging approaches assessing fatigue crack initiation and early propagation in a DS superalloy at room temperature[J]. Materials Science and Engineering:A, 2021, 805:140592. [44] LIU L, HUSSEINI N S, TORBET C J, et al. In situ synchrotron X-ray imaging of high-cycle fatigue crack propagation in single-crystal nickel-base alloys[J]. Acta Materialia, 2011, 59(13):5103-5115. [45] LIU Y H, KANG M D, WU Y, et al. Effects of microporosity and precipitates on the cracking behavior in polycrystalline superalloy Inconel 718[J]. Materials Characterization, 2017, 132:175-186. [46] LIU Y H, KANG M D, WU Y, et al. Crack formation and microstructure-sensitive propagation in low cycle fatigue of a polycrystalline nickel-based superalloy with different heat treatments[J]. International Journal of Fatigue, 2018, 108:79-89. [47] MAUREL V, HELFEN L, N'GUYEN F, et al. Three-dimensional investigation of thermal barrier coatings by synchrotron-radiation computed laminography[J]. Scripta Materialia, 2012, 66(7):471-474. [48] SOULIGNAC R, MAUREL V, RÉMY L, et al. Cohesive zone modelling of thermal barrier coatings interfacial properties based on three-dimensional observations and mechanical testing[J]. Surface & Coatings Technology, 2013, 237:95-104. [49] EPISHIN A, CAMIN B, HANSEN L, et al. Synchrotron sub-μ X-ray tomography of kirkendall porosity in a diffusion couple of nickel-base superalloy and nickel after annealing at 1250℃[J]. Advanced Engineering Materials, 2021, 23(4):2001220. [50] KHOSHKHOU D, MOSTAFAVI M, REINHARD C, et al. Three-dimensional displacement mapping of diffused Pt thermal barrier coatings via synchrotron X-ray computed tomography and digital volume correlation[J]. Scripta Materialia, 2016, 115:100-103. [51] REIMERS W, PYZALLA A R, SCHREYER A, 等. 中子和同步辐射在工程材料科学中的应用[M]. 姜晓明, 丁洪, 孙冬柏, 译. 北京:科学出版社, 2014:129-134. REIMERS W, PYZALLA A, SCHREYER A, et al. Neutrons and synchrotron radiation in engineering materials science[M]. JIANG X M, DING H, SUN D B, translated. Beijing:Science Press, 2014:129-134(in Chinese). [52] JENSEN M V R S, DYE D, JAMES K E, et al. Residual stresses in a welded superalloy disc:Characterization using synchrotron diffraction and numerical process modeling[J]. Metallurgical and Materials Transactions A, 2002, 33(9):2921-2931. [53] JUN T S, ZHANG S Y, GOLSHAN M, et al. Synchrotron energy-dispersive X-ray diffraction analysis of residual strains around friction welds between dissimilar aluminium and nickel alloys[J]. Materials Science Forum, 2008, 571-572:407-412. [54] LI C, JACQUES S D M, CHEN Y, et al. Precise strain profile measurement as a function of depth in thermal barrier coatings using high energy synchrotron X-rays[J]. Scripta Materialia, 2016, 113:122-126. [55] KNIPE K, MANERO A, SIDDIQUI S F, et al. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction[J]. Nature Communications, 2014, 5:4559. [56] SUZUKI K, TANAKA K, AKINIWA Y. Estimation of spalling stress in thermal barrier coatings using hard synchrotron X-rays[J]. JSME International Journal Series A, 2004, 47(3):318-323. [57] SUZUKI K, SHOBU T. Internal stress in EB-PVD thermal barrier coatings under thermal cycle[J]. Journal of the Society of Materials Science, 2009, 58(7):562-567. [58] SUZUKI K, TANAKA K, SHOBU T. Residual stress in EB-PVD thermal barrier coatings[M]//Materials Science Forum. Stafa:Trans Tech Publications Ltd., 2006:879-884. [59] LI C, JACQUES S D M, CHEN Y, et al. A synchrotron X-ray diffraction deconvolution method for the measurement of residual stress in thermal barrier coatings as a function of depth[J]. Journal of Applied Crystallography, 2016, 49(Pt 6):1904-1911. [60] LI C, ZHANG X, CHEN Y, et al. Understanding the residual stress distribution through the thickness of atmosphere plasma sprayed (APS) thermal barrier coatings (TBCs) by high energy synchrotron XRD:Digital image correlation (DIC) and image based modelling[J]. Acta Materialia, 2017, 132:1-12. [61] THORNTON J, COOKSON D, PESCOTT E. The measurement of strains within the bulk of aged and as-sprayed thermal barrier coatings using synchrotron radiation[J]. Surface & Coatings Technology, 1999, 120-121:96-102. [62] THORNTON J, SLATER S, ALMER J. The measurement of residual strains within thermal barrier coatings using high-energy X-ray diffraction[J]. Journal of the American Ceramic Society, 2005, 88(10):2817-2825. [63] ABA-PEREA P E, PIRLING T, PREUSS M. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design[J]. Materials & Design, 2016, 110:925-931. [64] ZHANG S Y, VORSTER W, JUN T S, et al. High energy white beam x-ray diffraction studies of residual strains in engineering components[J]. AIP Conference Proceedings, 2008, 1045(1):41-50. [65] WAHLMANN B, GALGON F, STARK A, et al. Growth and coarsening kinetics of gamma prime precipitates in CMSX-4 under simulated additive manufacturing conditions[J]. Acta Materialia, 2019, 180:84-96. [66] AMINFOROUGHI B, DEGENER S, RICHTER J, et al. A novel approach to robustly determine residual stress in additively manufactured microstructures using synchrotron radiation[J]. Advanced Engineering Materials, 2021, 23(11):2100184. [67] SONG X, XIE M, HOFMANN F, et al. Residual stresses and microstructure in powder bed direct laser deposition (PB DLD) samples[J]. International Journal of Material Forming, 2015, 8(2):245-254. [68] MATUSZEWSKI K, MATYSIAK H, JAROSZEWICZ J, et al. Influence of Bridgman process conditions on microstructure and porosity of single crystal Ni-base superalloy CMSX-4[J]. International Journal of Cast Metals Research, 2014, 27(6):329-335. [69] BIERMANN H, UNGÁR T, VON GROSSMANN B, et al. Microbeam synchrotron radiation diffraction study of local strains in a monocrystalline nickel-base turbine blade[J]. Materials Science and Engineering:A, 2004, 387-389:918-922. [70] UNGÁR T, BIERMANN H, VON GROSSMANN B. Synchrotron microbeam diffraction study of the microstructure and the chemical composition in a monocrystalline Ni-base turbine blade after a thermomechanical mission test[J]. Structural Chemistry, 2003, 14(1):49-56. [71] WESTPHAL E R, BROWN A D, QUINTANA E C, et al. Visible emission spectra of thermographic phosphors under x-ray excitation[J]. Measurement Science and Technology, 2021, 32(9):094008. [72] 王芳卫, 严启伟, 梁天骄, 等. 中子散射与散裂中子源[J]. 物理, 2005, 34(10):731-738. WANG F W, YAN Q W, LIANG T J, et al. Neutron scattering and spallation neutron sources[J]. Physics, 2005, 34(10):731-738(in Chinese). [73] 叶春堂. 我国的热中子散射工作现况和展望[J]. 核技术, 1993, 16(8):505-510. YE C T. Present condition and prospects of thermal neutron scattering work in China[J]. Nuclear Techniques, 1993, 16(8):505-510(in Chinese). [74] 刘蕴韬, 陈东风. 中国先进研究堆中子散射科学平台介绍[J]. 物理, 2013, 42(8):534-543. LIU Y T, CHEN D F. The neutron scattering platform of China's advanced research reactor[J]. Physics, 2013, 42(8):534-543(in Chinese). [75] 陈东风, 勾成, 叶春堂. 中国先进研究堆(CARR)上的中子散射工程[J]. 核技术, 2005, 28(2):127-129. CHEN D F, GOU C, YE C T. Neutron scattering project on CARR[J]. Nuclear Techniques, 2005, 28(2):127-129(in Chinese). [76] 张昌盛, 彭梅, 孙光爱. 中子散射:理解工程材料的必要工具[J]. 物理, 2015, 44(3):169-178. ZHANG C S, PENG M, SUN G A. Neutron scattering:A necessary tool for understanding engineering materials[J]. Physics, 2015, 44(3):169-178(in Chinese). [77] FAISAL N H, AHMED R, PRATHURU A K, et al. Measuring residual strain and stress in thermal spray coatings using neutron diffractometers[J]. Experimental Mechanics, 2022, 62(3):369-392. [78] 李峻宏, 高建波, 李际周, 等. 中子衍射残余应力无损测量技术及应用[J]. 中国材料进展, 2009, 28(12):10-14, 25. LI J H, GAO J B, LI J Z, et al. Technology and application of nondestructive residual stress measurement by neutron diffraction[J]. Materials China, 2009, 28(12):10-14, 25(in Chinese). [79] 孙凯, 李天富, 陈东风. 中子散射及相关技术的发展与应用[J]. 原子能科学技术, 2020, 54(S1):35-46. SUN K, LI T F, CHEN D F. Development and application of neutron scattering and related technique[J]. Atomic Energy Science and Technology, 2020, 54(S1):35-46(in Chinese). [80] ZRNÍK J, STRUNZ P, VRCHOVINSKY V, et al. Creep deformation and microstructural examination of a prior thermally exposed nickel base superalloy[J]. Key Engineering Materials, 2004, 274-276:925-930. [81] ZRNÍK J, STRUNZ P, VRCHOVINSKY V, et al. Degradation of creep properties in a long-term thermally exposed nickel base superalloy[J]. Materials Science and Engineering:A, 2004, 387-389:728-733. [82] MUKHERJI D, STRUNZ P, DEL GENOVESE D, et al. Investigation of microstructural changes in INCONEL 706 at high temperatures by in-situ small-angle neutron scattering[J]. Metallurgical and Materials Transactions A, 2003, 34A(12):2781-2792. [83] ZICKLER G A, SCHNITZER R, RADIS R, et al. Microstructure and mechanical properties of the superalloy ATI Allvac® 718PlusTM[J]. Materials Science and Engineering:A, 2009, 523(1-2):295-303. [84] ROGANTE M, LEBEDEV V T. Small angle neutron scattering comparative investigation of Inconel 738 samples submitted to different ageing treatments[J]. Materials & Design, 2008, 29(5):1060-1065. [85] STRUNZ P, PETRENEC M, POLÁK J, et al. Formation and dissolution of γ' precipitates in IN792 superalloy at elevated temperatures[J]. Metals, 2016, 6(2):37. [86] RATEL N, BRUNO G, DEMÉ B. In situ small-angle neutron scattering investigation of the γ' precipitation and growth in the nickel-based single-crystal alloy SC16[J]. Journal of Physics:Condensed Matter, 2005, 17(43):7061-7075. [87] GILLES R, MUKHERJI D, STRUNZ P, et al. Investigation of γ' precipitates in nickel-base single-crystal superalloy (SC 16) by SANS[J]. Physica B:Condensed Matter, 1997, 234-236:1008-1010. [88] STRUNZ P, SCHUMACHER G, CHEN W, et al. SANS examination of precipitate microstructure in the creep-exposed single-crystal Ni-base superalloy SC16[J]. Applied Physics A, 2002, 74(S1):S1083-S1085. [89] STRUNZ P, SCHUMACHER G, KLINGELHÖFFER H, et al. In situ observation of morphological changes of γ' precipitates in a pre-deformed single-crystal Ni-base superalloy[J]. Journal of Applied Crystallography, 2011, 44(5):935-944. [90] COLLINS D M, HEENAN R K, STONE H J. Characterization of gamma prime (γ') precipitates in a polycrystalline nickel-base superalloy using small-angle neutron scattering[J]. Metallurgical and Materials Transactions A, 2011, 42A(1):49-59. [91] BRASS A M, CHÊNE J. SANS analysis of γ' precipitation in the γ matrix of Ni base superalloy single crystals[J]. Scripta Materialia, 2000, 43(10):913-918. [92] SOLÍS C, MUNKE J, BERGNER M, et al. In situ characterization at elevated temperatures of a new Ni-based superalloy VDM-780 premium[J]. Metallurgical and Materials Transactions A, 2018, 49A(9):4373-4381. [93] STRUNZ P, MUKHERJI D, GILLES R, et al. Determination of γ' solution temperature in Re-rich Ni-base superalloy by small-angle neutron scattering[J]. Journal of Applied Crystallography, 2001, 34:541-548. [94] WU E D, SUN G A, CHEN B, et al. A neutron diffraction study of lattice distortion, mismatch and misorientation in a single-crystal superalloy after different heat treatments[J]. Acta Materialia, 2013, 61(7):2308-2319. [95] HUANG S Y, AN K, GAO Y, et al. Determination of γ/γ' lattice misfit in Ni-based single-crystal superalloys at high temperatures by neutron diffraction[J]. Metallurgical and Materials Transactions A, 2018, 49A(3):740-751. [96] HUANG E W, LIAW P K, PORCAR L, et al. Study of nanoprecipitates in a nickel-based superalloy using small-angle neutron scattering and transmission electron microscopy[J]. Applied Physics Letters, 2008, 93(16):161904. [97] ZRNÍK J, STRUNZ P, MALDINI M, et al. Small-angle neutron scattering investigation of γ' precipitate morphology evolution in creep-exposed single-crystal Ni-base superalloy CMSX-4[J]. Journal of Physics:Condensed Matter, 2008, 20(10):104261. [98] STRUNZ P, ZRNÍK J, EPISHIN A, et al. Microstructure of creep-exposed single crystal nickel base superalloy CSMX4[J]. Journal of Physics:Conference Series, 2010, 247:012039. [99] PETRENEC M, STRUNZ P, GASSER U, et al. Nanostructure characterization of IN738LC superalloy fatigued at high temperature[C]//NANOCON 2013. Brno:[s.n.], 2013:16-18. [100] HUANG E W, CLAUSEN B, WANG Y D, et al. A neutron-diffraction study of the low-cycle fatigue behavior of HASTELLOY® C-22HSTM alloy[J]. International Journal of Fatigue, 2007, 29(9-11):1812-1819. [101] HUANG E W, BARABASH R I, CLAUSEN B, et al. Fatigue-induced reversible/irreversible structural-transformations in a Ni-based superalloy[J]. International Journal of Plasticity, 2010, 26(8):1124-1137. [102] GRANT B M B, FRANCIS E M, DA FONSECA Q J, et al. Deformation behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron microscopy[J]. Acta Materialia, 2012, 60(19):6829-6841. [103] KVMMEL F, KIRCHMAYER A, SOLÍS C, et al. Deformation mechanisms in Ni-based superalloys at room and elevated temperatures studied by in situ neutron diffraction and electron microscopy[J]. Metals, 2021, 11(5):719. [104] BENSON M L, LIAW P K, SALEH T A, et al. Deformation-induced phase development in a cobalt-based superalloy during monotonic and cyclic deformation[J]. Physica B:Condensed Matter, 2006, 385-386:523-525. [105] STARON P, CIHAK U, CLEMENS H, et al. Diffraction-based residual stress analysis applied to problems in the aircraft industry[J]. Advanced Engineering Materials, 2007, 9(8):627-638. [106] QIN H L, BI Z N, YU H Y, et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy[J]. Materials Science and Engineering:A, 2018, 728:183-195. [107] QIN H L, BI Z N, ZHANG R Y, et al. Influence of residual stresses on ageing precipitation behavior of alloy 718[M]//The Minerals, Metals & Materials Series. Cham:Springer International Publishing, 2018:579-593. [108] LAWITZKI R, HASSAN S, KARGE L, et al. Differentiation of γ'- and γ''- precipitates in Inconel 718 by a complementary study with small-angle neutron scattering and analytical microscopy[J]. Acta Materialia, 2019, 163:28-39. [109] ZHANG R Y, QIN H L, BI Z N, et al. Evolution of lattice spacing of gamma double prime precipitates during aging of polycrystalline Ni-base superalloys:An in situ investigation[J]. Metallurgical and Materials Transactions A, 2020, 51(2):574-585. [110] ZHANG R Y, BI Z N, QIN H L, et al. Constrained lattice misfit measurement in bulk inconel 718 using high resolution neutron diffraction[M]//The Minerals, Metals & Materials Series. Cham:Springer International Publishing, 2018:439-448. [111] ILAVSKY J, STALICK J K. Phase composition and its changes during annealing of plasma-sprayed YSZ[J]. Surface & Coatings Technology, 2000, 127(2-3):120-129. [112] VOGT T, HUNTER B A, THORNTON J. Structural evolution of thermal-sprayed yttria-stabilized ZrO2 thermal barrier coatings with annealing-A neutron diffraction study[J]. Journal of the American Ceramic Society, 2001, 84(3):678-680. [113] ILAVSKY J, WALLACE J, STALICK J K. Thermal spray yttria-stabilized zirconia phase changes during annealing[J]. Journal of Thermal Spray Technology, 2001, 10(3):497-501. [114] SAVIN A, CRAUS M L, TURCHENKO V, et al. Complementary methods for evaluation of yttria stabilized zirconia coatings used as thermal barrier coating[J]. Strojniški Vestnik-Journal of Mechanical Engineering, 2018, 64(11):706-715. [115] FENG Y, DONG T S, LI G L, et al. High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings[J]. Journal of Alloys and Compounds, 2020, 828:154266. [116] KULKARNI A, GOLAND A, HERMAN H, et al. Advanced neutron and X-ray techniques for insights into the microstructure of EB-PVD thermal barrier coatings[J]. Materials Science and Engineering:A, 2006, 426(1-2):43-52. [117] SARUHAN B, RYUKHTIN V, KELM K. Correlation of thermal conductivity changes with anisotropic nano-pores of EB-PVD deposited FYSZ-coatings[J]. Surface & Coatings Technology, 2011, 205(23-24):5369-5378. [118] RENTERIA A F, SARUHAN B, SCHULZ U, et al. Effect of morphology on thermal conductivity of EB-PVD PYSZ TBCs[J]. Surface & Coatings Technology, 2006, 201(6):2611-2620. [119] RENTERIA A F, SARUHAN B. Effect of ageing on microstructure changes in EB-PVD manufactured standard PYSZ top coat of thermal barrier coatings[J]. Journal of the European Ceramic Society, 2006, 26(12):2249-2255. [120] WANG Z, KULKARNI A, DESHPANDE S, et al. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings[J]. Acta Materialia, 2003, 51(18):5319-5334. [121] ALLEN A J, ILAVSKY J, LONG G G, et al. Microstructural characterization of yttria-stabilized zirconia plasma-sprayed deposits using multiple small-angle neutron scattering[J]. Acta Materialia, 2001, 49(9):1661-1675. [122] SARUHAN B, OCHROMBEL R, RYUKHTIN V, et al. Analysis of anisotropic void system in electron-beam physical-vapour-deposited (EB-PVD) thermal-barrier coatings[J]. Advanced Engineering Materials, 2009, 11(6):488-494. [123] RYUKHTIN V, SARUHAN B, OCHROMBEL R, et al. Studying of PYSZ and FYSZ turbine blade coatings by small-angle neutron scattering[J]. Journal of Physics Conference Series, 2012, 340(1):012097. [124] RENTERIA A F, SARUHAN B, ILAVSKY J, et al. Application of USAXS analysis and non-interacting approximation to determine the influence of process parameters and ageing on the thermal conductivity of electron-beam physical vapor deposited thermal barrier coatings[J]. Surface & Coatings Technology, 2007, 201(8):4781-4788. [125] STRUNZ P, SCHUMACHER G, VAßEN R, et al. In situ small-angle neutron scattering study of La2Zr2O7 and SrZrO3 ceramics for thermal barrier coatings[J]. Scripta Materialia, 2006, 55(6):545-548. [126] KULKARNI A A, GOLAND A, HERMAN H, et al. Advanced microstructural characterization of plasma-sprayed zirconia coatings over extended length scales[J]. Journal of Thermal Spray Technology, 2005, 14(2):239-250. [127] TEJERO-MARTIN D, BAI M W, MATA J, et al. Evolution of porosity in suspension thermal sprayed YSZ thermal barrier coatings through neutron scattering and image analysis techniques[J]. Journal of the European Ceramic Society, 2021, 41(12):6035-6048. [128] PETORAK C, ILAVSKY J, WANG H, et al. Microstructural evolution of 7 wt.% Y2O3-ZrO2 thermal barrier coatings due to stress relaxation at elevated temperatures and the concomitant changes in thermal conductivity[J]. Surface & Coatings Technology, 2010, 205(1):57-65. [129] ALLEN A J, BERK N F, ILAVSKY J, et al. Multiple small-angle neutron scattering studies of anisotropic materials[J]. Applied Physics A, 2002, 74(S1):937-939. [130] 韩松柏, 刘蕴韬, 陈东风. 中国先进研究堆中子散射大科学装置[J]. 科学通报, 2015, 60(22):2068-2078. HAN S B, LIU Y T, CHEN D F. Large-scale scientific facility at China Advanced Research Reactor for neutron scattering[J]. Chinese Science Bulletin, 2015, 60(22):2068-2078(in Chinese). [131] PREUSS M, WITHERS P J, PANG J W L, et al. Inertia welding nickel-based superalloy:Part II[J]. Metallurgical and Materials Transactions A, 2002, 33(10):3227-3234. [132] WANG L, PREUSS M, WITHERS P J, et al. Energy-input-based finite-element process modeling of inertia welding[J]. Metallurgical and Materials Transactions B, 2005, 36(4):513-523. [133] SMITH M, LEVESQUE J B, BICHLER L, et al. Residual stress analysis in linear friction welded in-service Inconel 718 superalloy via neutron diffraction and contour method approaches[J]. Materials Science and Engineering:A, 2017, 691:168-179. [134] PANG J W L, PREUSS M, WITHERS P J, et al. Effects of tooling on the residual stress distribution in an inertia weld[J]. Materials Science and Engineering:A, 2003, 356(1-2):405-413. [135] IQBAL N, ROLPH J, MOAT R, et al. A comparison of residual stress development in inertia friction welded fine grain and coarse grain nickel-base superalloy[J]. Metallurgical and Materials Transactions A, 2011, 42A(13):4056-4063. [136] STONE H J, ROBERTS S M, REED R C. A process model for the distortion induced by the electron-beam welding of a nickel-based superalloy[J]. Metallurgical and Materials Transactions A, 2000, 31(9):2261-2273. [137] KORSUNSKY A M, REGINO G M, NOWELL D, et al. Inertia friction welds between nickel superalloy components:Analysis of residual stress by eigenstrain distributions[J]. The Journal of Strain Analysis for Engineering Design, 2009, 44(2):159-170. [138] CIHAK U, STARON P, CLEMENS H, et al. Characterization of residual stresses in turbine discs by neutron and high-energy X-ray diffraction and comparison to finite element modeling[J]. Materials Science and Engineering:A, 2006, 437(1):75-82. [139] CIHAK U, STARON P, MARKETZ W, et al. Residual stresses in forged IN718 turbine discs[J]. Zeitschrift für Metallkunde, 2004, 95(7):663-667. [140] ABA-PEREA P E, WITHERS P J, PIRLING T, et al. In situ study of the stress relaxation during aging of nickel-base superalloy forgings[J]. Metallurgical and Materials Transactions A, 2019, 50A(8):3555-3565. [141] SONG R H, QIN H L, LI D F, et al. An experimental and numerical study of quenching-induced residual stresses under the effect of dynamic strain aging in an IN718 superalloy disc[J]. Journal of Engineering Materials and Technology, 2022, 144(1):011002. [142] MO F J, WU E D, ZHANG C S, et al. Correlation between the microstructural defects and residual stress in a single crystal nickel-based superalloy during different creep stages[J]. Metals and Materials International, 2018, 24(5):1002-1011. [143] LU Y, MA S, MAJUMDAR B S. Elastic microstrains during tension and creep of superalloys:Results from in situ neutron diffraction[C]//Superalloys 2008(Eleventh International Symposium). Pittsburgh:The Minerals, Metals & Materials Society (TMS), 2008:553-562. [144] GIBMEIER J, BACK H C, MUTTER M, et al. Study of stability of microstructure and residual strain after thermal loading of plasma sprayed YSZ by through surface neutron scanning[J]. Physica B:Condensed Matter, 2018, 551:69-78. [145] SCARDI P, LEONI M, BERTINI L, et al. Strain gradients in plasma-sprayed zirconia thermal barrier coatings[J]. Surface & Coatings Technology, 1998, 108-109:93-98. [146] OWOSENI T, BAI M, HUSSAIN T, et al. Neutron diffraction residual stress measurements in suspension HVOF sprayed Al2O3 and YSZ coatings[C]//International Thermal Spray Conference. Materials Park:American Society for Metals (ASM International), 2018:490-495. [147] STARON P, CIHAK U, STOCKINGER M, et al. Characterization of residual stresses in IN 718 turbine discs by neutron diffraction and finite element modeling[J]. Journal of Neutron Research, 2007, 15(3):185-192. [148] KARADGE M, GRANT B, WITHERS P J, et al. Thermal relaxation of residual stresses in nickel-based superalloy inertia friction welds[J]. Metallurgical and Materials Transactions A, 2011, 42A(8):2301-2311. |
[1] | Zheming FAN, Weizhu YANG, Yan ZENG, Zhenan ZHAO, Lei LI. Anisotropic tensile properties of GH4169 alloy repaired by laser direct energy deposition [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 429129-429129. |
[2] | Long WANG, Yuexun LIU, Shengchuan WU, Chuantao HOU, Fengtao ZHANG. In⁃situ X⁃ray tomography based characterization of propellant damage evolution [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 427022-427022. |
[3] | Naxi TIAN, Jianan XIE, Hui JIANG, Yu YANG. Characterization of space X-ray reflective focusing system by using synchrotron radiation facility [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 527386-527386. |
[4] | Juan YANG, Jianghao NIU, Qingsong ZHANG. In⁃situ explosion limit of thermal runaway gas explosion in cyclic aging lithium⁃ion batteries: Experimental analysis [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 428529-428529. |
[5] | Yankuan LIU, Hang YUAN, Dinghe LI, Yujie FEI. Effect of thermal aging on mechanical properties of thermal barrier coatings interface and numerical calculation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 428507-428507. |
[6] | Nan ZHAO, Duosheng LI, Yin YE, Fencheng LIU, Wugui JIANG. Microstructure and properties of GH5188 alloy fabricated by selective laser melting [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 428332-428332. |
[7] | Kai SONG, Chi ZHANG, Chenhui YAN, Ning NING, Junling FAN, Rongbiao WANG. Reliability of aero-engine wheel model assisted eddy current testing based on two-parameter representation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 227866-227866. |
[8] | Laixiao LU, Changguan XU, Jianhua LIU, Meizhen QIN, Yingbo LYU, Yuqin YAN. Influence of initial stress state on bilateral rolling process of thin⁃walled part [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 427415-427415. |
[9] | LI Dingjun, YANG Liuyu, SUN Fan, JIANG Peng, CHEN Yiwen, WANG Tiejun. Effect of preheating temperature on formation of surface cracks in thermal barrier coating system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526184-526184. |
[10] | MA Yu'e, YANG Meng, SUN Wenbo. Cracking behavior of thermal barrier coating after thermal shock based on perdynamic theory [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526587-526587. |
[11] | LIU Zhendong, ZHENG Xitao, FAN Wenjing, ZHANG Dongjian. Effect of process-induced residual stress on strength of UAV composite wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526117-526117. |
[12] | YANG Siyuan, WANG Ying, WANG Jilai, YANG Zhenwen, WANG Dongpo. Interfacial microstructure and mechanical properties of vacuum-brazed Al2O3 ceramic and GH3536 joint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525806-525806. |
[13] | WU Xinlei, LIU Yonghong, QI Liang, ZHAO Lilong, JI Renjie. High-efficiency electrical discharge assisted arc milling of nickel-based superalloy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525615-525615. |
[14] | WANG Bin, WANG Haitao, WANG Yufeng, ZHANG Wenwu. Water-assisted laser scanning machining test of thermal barrier coating [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525353-525353. |
[15] | LI Hui, LI Guangxian, GAO Ruilin, JIN Xin, LIU Lu, LI Chaojiang, Songlin DING. Research progress of post-processing of stainless steel additive manufacturing parts [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525847-525847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341