ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (1): 627211-627211.doi: 10.7527/S1000-6893.2022.27211
Previous Articles Next Articles
Binbin ZHAO1,2, Heng ZHANG3(), Jie LI1
Received:
2022-03-29
Revised:
2022-04-18
Accepted:
2022-06-13
Online:
2023-01-15
Published:
2022-06-27
Contact:
Heng ZHANG
E-mail:qwedc0919@163.com
Supported by:
CLC Number:
Binbin ZHAO, Heng ZHANG, Jie LI. Review of numerical simulation on complex separated flow of iced airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 627211-627211.
1 | GENT R W, DART N P, CANSDALE J T. Aircraft icing[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1776): 2873-2911. |
2 | CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11-21. |
3 | BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362. |
4 | LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767. |
5 | STEBBINS S J, LOTH E, BROEREN A P, et al. Review of computational methods for aerodynamic analysis of iced lifting surfaces[J]. Progress in Aerospace Sciences, 2019, 111: 100583. |
6 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
7 | JOHNSON D A, KING L S. A mathematically simple turbulence closure model for attached and separated turbulent boundary layers[J]. AIAA Journal, 1985, 23(11): 1684-1692. |
8 | WILCOX D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11): 1299-1310. |
9 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
10 | POTAPCZUK M, GERHART P. Progress in development of a Navier-Stokes solver for evaluation of iced airfoil performance[C]∥23rd Aerospace Sciences Meeting. Reston: AIAA, 1985. |
11 | KWON O, SANKAR L. Numerical study of the effects of icing on finite wing aerodynamics[C]∥28th Aerospace Sciences Meeting. Reston: AIAA, 1990. |
12 | KWON O, SANKAR L. Numerical investigation of performance degradation of wings and rotors due to icing[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
13 | SHIM J, CHUNG J, LE K. A computational investigation of ice geometry effects on airfoil performances[C]∥39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
14 | CHI X, LI Y, ADDY H, et al. A comparative study using CFD to predict iced airfoil aerodynamics[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
15 | CHI X, ZHU B, SHIH T, et al. CFD analysis of the aerodynamics of a business-jet airfoil with leading-edge ice accretion[C]∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
16 | PAN J P, LOTH E. Reynolds-averaged Navier-Stokes simulations of airfoils and wings with ice shapes[J]. Journal of Aircraft, 2004, 41(4): 879-891. |
17 | MARONGIU C, VITAGLIANO P L, ZANAZZI G, et al. Aerodynamic analysis of an iced airfoil at medium/high Reynolds number[J]. AIAA Journal, 2008, 46(10): 2469-2478. |
18 | JUN G, OLIDEN D, POTAPCZUK M G, et al. Computational aerodynamic analysis of three-dimensional ice shapes on a NACA 23012 airfoil[C]∥6th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2014. |
19 | MIRZAEI M, ARDEKANI M A, DOOSTTALAB M. Numerical and experimental study of flow field characteristics of an iced airfoil[J]. Aerospace Science and Technology, 2009, 13(6): 267-276. |
20 | 陈科, 曹义华, 安克文, 等. 应用混合网格分析复杂积冰翼型气动性能[J]. 航空学报, 2007, 28(S1): 87-91. |
CHEN K, CAO Y H, AN K W, et al. Application of hybrid grid to analyzing complex iced airfoil aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1): 87-91 (in Chinese). | |
21 | 陈科, 曹义华, 安克文, 等. 复杂积冰翼型气动性能分析[J]. 航空动力学报, 2007, 22(6): 986-990. |
CHEN K, CAO Y H, AN K W, et al. Analysis on aerodynamic performance of complex iced airfoils[J]. Journal of Aerospace Power, 2007, 22(6): 986-990 (in Chinese). | |
22 | 李焱鑫, 张辰, 刘洪, 等. 大粒径过冷水溢流结冰的翼型气动影响分析[J]. 空气动力学学报, 2014, 32(3): 376-382. |
LI Y X, ZHANG C, LIU H, et al. Aerodynamic effects of supercooled large droplet runback ice on airfoils[J]. Acta Aerodynamica Sinica, 2014, 32(3): 376-382 (in Chinese). | |
23 | LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289. |
24 | LI H R, ZHANG Y F, CHEN H X. Numerical simulation of iced wing using separating shear layer fixed turbulence models[J]. AIAA Journal, 2021, 59(9): 3667-3681. |
25 | LI H R, ZHANG Y F, CHEN H X. Aerodynamic prediction of iced airfoils based on modified three-equation turbulence model[J]. AIAA Journal, 2020, 58(9): 3863-3876. |
26 | 黄冉冉, 李栋, 刘藤, 等. 冰形表面粗糙度对翼型的失速特性影响分析[J]. 空气动力学学报, 2021, 39(1): 59-65. |
HUANG R R, LI D, LIU T, et al. The effect of ice accretion roughness on airfoil stall characteristics[J]. Acta Aerodynamica Sinica, 2021, 39(1): 59-65 (in Chinese). | |
27 | 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(S1): 726371. |
LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726371 (in Chinese). | |
28 | BROWN C M, KUNZ R, KINZEL M, et al. RANS and LES simulation of airfoil ice accretion aerodynamics: AIAA-2014-2203[R]. Reston: AIAA, 2014. |
29 | GRINSTEIN F F, MARGOLIN L G, RIDER W. Implicit Large Eddy Simulation: Computing turbulent fluid dynamics[M]. Cambridge: Cambridge University Press, 2007. |
30 | HUNT J, WRAY A, MOIN P. Proceedings of the 1988 summer program[R]. Stanford: Center for Turbulence Research, Stanford University, 1988. |
31 | CHUNG D, PULLIN D I. Large-eddy simulation and wall modelling of turbulent channel flow[J]. Journal of Fluid Mechanics, 2009, 631: 281-309. |
32 | XIAO M C, ZHANG Y F, ZHOU F. Numerical study of iced airfoils with horn features using large-eddy simulation[J]. Journal of Aircraft, 2019, 56(1): 94-107. |
33 | SPALART P R. Young-person’s guide to detached-eddy simulation grids: NASA CR-2001-211032[R]. Washington, D.C.: NASA, 2001. |
34 | SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3): 252-263. |
35 | SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 181-202. |
36 | SPALART P R, JOU W, STRELETS M, et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[M]. Los Angles: Greyden Press, 1997. |
37 | SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181. |
38 | MENTER F R, KUNTZ M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[M]∥The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains. Berlin, Heidelberg: Springer, 2004: 339-352. |
39 | SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. |
40 | PAN J P, LOTH E. Detached eddy simulations for airfoil with ice shapes[C]∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
41 | PAN J P, LOTH E. Detached eddy simulations for iced airfoils[J]. Journal of Aircraft, 2005, 42(6): 1452-1461. |
42 | CHOO Y, THOMPSON D, MOGILI P. Detached-eddy simulations of separated flow around wings with ice accretions: Year one report: NASA CR-2004-213379[R]. Washington, D.C.: NASA, 2004. |
43 | MOGILI P, THOMPSON D, CHOO Y, et al. RANS and DES computations for a wing with ice accretion[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
44 | LORENZO A, VALERO E, DE-PABLO V. DES/DDES post-stall study with iced airfoil[C]∥49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
45 | LAKSHMIPATHY S, TOGITI V. Assessment of alternative formulations for the specific-dissipation rate in RANS and variable-resolution turbulence models[C]∥ 20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011. |
46 | GIRIMAJI S S. Partially-averaged Navier-Stokes model for turbulence: A Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method[J]. Journal of Applied Mechanics, 2006, 73(3): 413-421. |
47 | ALAM M, WALTERS K, THOMPSON D. Simulations of separated flow around an airfoil with ice shape using hybrid RANS/LES models[C]∥ 29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011. |
48 | ALAM M F, THOMPSON D S, WALTERS D K. Hybrid Reynolds-averaged Navier-Stokes/large-eddy simulation models for flow around an iced wing[J]. Journal of Aircraft, 2015, 52(1): 244-256. |
49 | MOLINA E S, SILVA D M, BROEREN A P, et al. Application of DDES to iced airfoil in Stanford University Unstructured (SU2)[M]∥Progress in Hybrid RANS-LES Modelling. Cham: Springer, 2020: 283-293. |
50 | XIAO Z X, LIU J, HUANG J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5): 1119-1136. |
51 | XIAO Z X, LIU J, LUO K Y, et al. Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches[J]. AIAA Journal, 2013, 51(1): 107-125. |
52 | XIAO Z X, LUO K Y. Improved delayed detached-eddy simulation of massive separation around triple cylinders[J]. Acta Mechanica Sinica, 2015, 31(6): 799-816. |
53 | 张恒, 李杰, 龚志斌. 基于IDDES方法的翼型结冰失速分离流动数值模拟[J]. 空气动力学学报, 2016, 34(3): 283-288. |
ZHANG H, LI J, GONG Z B. Numerical simulation of the stall separated flow around an iced airfoil based on IDDES[J]. Acta Aerodynamica Sinica, 2016, 34(3): 283-288 (in Chinese). | |
54 | ZHANG H, LI J, JIANG Y X, et al. Analysis of the expanding process of turbulent separation bubble on an iced airfoil under stall conditions[J]. Aerospace Science and Technology, 2021, 114: 106755. |
55 | HU S F, ZHANG C, LIU H, et al. IDDES simulation of flow separation on an 3-D NACA23012 airfoil with spanwise ridge ice[C]∥2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018. |
56 | HU S F, ZHANG C, LIU H, et al. Study on vortex shedding mode on the wake of horn/ridge ice contamination under high-Reynolds conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(13): 5045-5056. |
57 | BAO S Y, SHI Y J, SONG W B. Numerical study of iced airfoil aeroacoustics using IDDES[C]∥AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
58 | 谭雪, 张辰, 徐文浩, 等. 近失速形态下冰脊分离非定常流的IDDES和模态分析[J]. 上海交通大学学报, 2021, 55(11): 1333-1342. |
TAN X, ZHANG C, XU W H, et al. Unsteadiness and modal analysis of ridge ice-induced separation in post-stall conditions via IDDES[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1333-1342 (in Chinese). | |
59 | ZHANG C, TAN X, XU W H, et al. High-fidelity modeling of turbulent shear flow downstream of a 3-D airfoil with spanwise ice contamination leading stall[J]. Computers & Fluids, 2022, 240: 105423. |
60 | SHUR M L, SPALART P R, STRELETS M K, et al. An enhanced version of DES with rapid transition from RANS to LES in separated flows[J]. Flow, Turbulence and Combustion, 2015, 95(4): 709-737. |
61 | XIAO M C, ZHANG Y F. Improved prediction of flow around airfoil accreted with horn or ridge ice[J]. AIAA Journal, 2021, 59(6): 2318-2327. |
62 | XIAO M C, ZHANG Y F. Assessment of the SST-IDDES with a shear-layer-adapted subgrid length scale for attached and separated flows[J]. International Journal of Heat and Fluid Flow, 2020, 85: 108653. |
63 | DECK S. Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation[J]. Theoretical and Computational Fluid Dynamics, 2012, 26(6): 523-550. |
64 | DUCLERCQ M, BRUNET V, MOENS F. Physical analysis of the separated flow around an iced airfoil based on ZDES simulations[C]∥4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2012. |
65 | ZHANG Y, HABASHI W G, KHURRAM R A. Zonal detached-eddy simulation of turbulent unsteady flow over iced airfoils[J]. Journal of Aircraft, 2016, 53(1): 168-181. |
66 | COSTES M, MOENS F. Advanced numerical prediction of iced airfoil aerodynamics[J]. Aerospace Science and Technology, 2019, 91: 186-207. |
67 | COSTES M, MOENS F, BRUNET V. Prediction of iced airfoil aerodynamic characteristics[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
68 | BHUSHAN S, WALTERS D K. A dynamic hybrid Reynolds-averaged Navier Stokes-Large eddy simulation modeling framework[J]. Physics of Fluids, 2012, 24(1): 015103. |
69 | WALTERS D K, BHUSHAN S, ALAM M F, et al. Investigation of a dynamic hybrid RANS/LES modelling methodology for finite-volume CFD simulations[J]. Flow, Turbulence and Combustion, 2013, 91(3): 643-667. |
70 | GIRIMAJI S S, SRINIVASAN R, JEONG E. PANS turbulence model for seamless transition between RANS and LES: Fixed-point analysis and preliminary results[C]∥Proceedings of ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. New York: ASME, 2003: 1901-1909. |
71 | MENTER F, EGOROV Y. A scale adaptive simulation model using two-equation models[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
72 | CHEN S Y, XIA Z H, PEI S Y, et al. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows[J]. Journal of Fluid Mechanics, 2012, 703: 1-28. |
73 | XIAO M C, ZHANG Y F, CHEN H X. Numerical study of an iced airfoil using window-embedded RANS/LES hybrid method[C]∥9th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2017. |
74 | ANSELL P J, BRAGG M B. Measurement of unsteady flow reattachment on an airfoil with an ice shape[J]. AIAA Journal, 2014, 52(3): 656-659. |
75 | ANSELL P J, BRAGG M B. Unsteady modes in flowfield about airfoil with horn-ice shape[J]. Journal of Aircraft, 2016, 53(2): 475-486. |
[1] | Li NONG, Zishuai SHENG, Jun XIAN, Huaibao ZHANG. Numerical simulation of separated flow around iced airfoil based on high⁃order schemes [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729291-729291. |
[2] | Shengye WANG, Xiaogang DENG, Yidao DONG, Dongfang WANG, Jiahong CAI. High-order numerical methods for engineering turbulence simulation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528728-528728. |
[3] | Heng ZHANG, Jie LI, Binbin ZHAO. Improvement mechanism of ice-tolerance capacity for iced airfoil with variable camber of drooping leading edge [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 627114-627114. |
[4] | SHU Bowen, DU Yiming, GAO Zhenghong, XIA Lu, CHEN Shusheng. Numerical simulation of Reynolds stress model of typical aerospace separated flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526385-526385. |
[5] | LI Chengcheng, LI Fang, YANG Bin, WANG Ying. Numerical investigation of nozzle flow separation control using plasma actuation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 124547-124547. |
[6] | WANG Fang, WANG Yudong, JIANG Shengli, CHEN Jun, TANG Jun, XU Huasheng, LI Xiangyuan, XING Jingwen, GAO Dongshuo, JIN Jie. Development and testing of AECSC-JASMIN turbulent combustion simulation software [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 625003-625003. |
[7] | CHEN Hao, YUAN Xianxu, BI Lin, HUA Ruhao, SI Fangfang, TANG Zhigong. Simulation of separated flow based on RANS/LES hybrid method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(8): 123642-123642. |
[8] | ZHU Zhibin, SHANG Qing, BAI Peng, LIU Qiang. Evolution of laminar separation phenomenon on low Reynolds number airfoil at different Reynolds numbers [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(5): 122528-122528. |
[9] | XUE Bangmeng, ZHANG Wensheng, SUN Xuewei, WU Yuang. Multi-objective wing shape optimization for a wide-body civil aircraft in wing-body-pylon-powered nacelle configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522381-522381. |
[10] | LI Wei, MENG Dehong, HONG Junwu, LI Hua. Effect of mesh topology on numerical simulation of DLR-F6 configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(2): 120177-120183. |
[11] | XU Zhulin, DA Xingya, FAN Zhaolin. Assessment of swirl distortion of serpentine inlet based on five-hole probe [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(12): 121342-121342. |
[12] | ZHANG Lu, LI Jie. Numerical simulations of supersonic base flow field based on RANS/LES approaches [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(1): 120102-120102. |
[13] | MENG Dehong, SUN Yan, WANG Yuntao, LI Wei. Numerical simulation of fluctuating pressure of fighter vertical tail [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(8): 2472-2480. |
[14] | DU Hai, SHI Zhiwei, CHENG Keming, LI Ganniu, SONG Tianwei, LI Zheng. Frequency optimization and vortex dynamic process analysis of separated flow control by nanosecond pulsed plasma discharge [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(7): 2102-2111. |
[15] | WANG Tong, SUN Liangliang, SHAO Yuchang. PIV test and flow analysis of scavenge passage in inertial particle separator [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(10): 2961-2969. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 399
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 695
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341