ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (7): 27131-027131.doi: 10.7527/S1000-6893.2022.27131
• Reviews • Previous Articles Next Articles
Le XIANG(), Kaifu XU, Hui CHEN, Suibo LI, Kai ZHANG, Shixin LIU
Received:
2022-03-10
Revised:
2022-03-30
Accepted:
2022-04-20
Online:
2023-04-15
Published:
2022-05-09
Contact:
Le XIANG
E-mail:13126986485@163.com
Supported by:
CLC Number:
Le XIANG, Kaifu XU, Hui CHEN, Suibo LI, Kai ZHANG, Shixin LIU. Experimental studies on cavitating flow for liquid rocket engine cryogenic turbopump: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 27131-027131.
1 | 谭永华. 大推力液体火箭发动机研究[J]. 宇航学报, 2013, 34(10): 1303-1308. |
TAN Y H. Research on large thrust liquid rocket engine[J]. Journal of Astronautics, 2013, 34(10): 1303-1308 (in Chinese). | |
2 | 杨宝锋, 李斌, 陈晖, 等. 液体火箭发动机推进剂泵诱导轮与离心轮的匹配[J]. 航空学报, 2019, 40(5): 122609. |
YANG B F, LI B, CHEN H, et al. Matching effect between inducer and impeller in a liquid rocket engine propellant pump[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122609 (in Chinese). | |
3 | 杨宝锋, 贾少锋, 李斌, 等. 大偏心及大扰动下涡轮泵密封转子动力特性[J]. 火箭推进, 2019, 45(6): 1-9. |
YANG B F, JIA S F, LI B, et al. Investigation on rotordynamic characteristics of a turbopump seal under large eccentricities and disturbances[J]. Journal of Rocket Propulsion, 2019, 45(6): 1-9 (in Chinese). | |
4 | 汪广旭, 谭永华, 陈建华, 等. 考虑喷注流强分布的纵向稳定性建模与分析[J]. 航空学报, 2021, 42(6): 124510. |
WANG G X, TAN Y H, CHEN J H, et al. Modeling and analysis of longitudinal stability considering injection intensity distribution[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124510 (in Chinese). | |
5 | ZHANG W D, LIU C, WANG W. Innovation and outlook of the new generation of cryogenic and quick-launch launch vehicle[J]. Aerospace China, 2017, 18(2): 3-12. |
6 | YANG B F, LI B, CHEN H, et al. Numerical investigation of the clocking effect between inducer and impeller on pressure pulsations in a liquid rocket engine oxygen turbopump[J]. Journal of Fluids Engineering, 2019, 141(7): 071109. |
7 | WANG C M, XIANG L, TAN Y H, et al. Experimental investigation of thermal effect on cavitation characteristics in a liquid rocket engine turbopump inducer[J]. Chinese Journal of Aeronautics, 2021, 34(8): 48-57. |
8 | 李惠敏, 李向阳, 蒋建园, 等. 诱导轮出口参数对高速离心泵性能的影响[J]. 火箭推进, 2020, 46(1): 69-75. |
LI H M, LI X Y, JIANG J Y, et al. Influence of outlet parameters of inducer on performance of high speed centrifugal pump[J]. Journal of Rocket Propulsion, 2020, 46(1): 69-75 (in Chinese). | |
9 | 项乐, 陈晖, 谭永华, 等. 诱导轮空化流动特性实验研究[J]. 农业机械学报, 2019, 50(12): 125-132. |
XIANG L, CHEN H, TAN Y H, et al. Experiment of cavitating flow characteristics of inducer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 125-132 (in Chinese). | |
10 | 李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题[J]. 力学进展, 2021, 51(4): 831-864. |
LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831-864 (in Chinese). | |
11 | 陈晖, 李斌, 张恩昭, 等. 液体火箭发动机高转速诱导轮旋转空化[J]. 推进技术, 2009, 30(4): 390-395. |
CHEN H, LI B, ZHANG E Z, et al. Rotating cavitation of the high-speed rotational inducer of LPRE[J]. Journal of Propulsion Technology, 2009, 30(4): 390-395 (in Chinese). | |
12 | CHEN T R, CHEN H, LIU W C, et al. Unsteady characteristics of liquid nitrogen cavitating flows in different thermal cavitation mode[J]. Applied Thermal Engineering, 2019, 156: 63-76. |
13 | CHEN T R, CHEN H, LIANG W D, et al. Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition[J]. International Journal of Heat and Mass Transfer, 2019, 132: 618-630. |
14 | 项乐, 谭永华, 陈晖, 等. 基于对流换热的低温空化流动数值模拟研究[J]. 推进技术, 2019, 40(6): 1314-1323. |
XIANG L, TAN Y H, CHEN H, et al. Numerical study of cryogenic cavitation based on convection heat transfer[J]. Journal of Propulsion Technology, 2019, 40(6): 1314-1323 (in Chinese). | |
15 | 项乐, 陈晖, 谭永华, 等. 液体火箭发动机诱导轮空化热力学效应研究[J]. 推进技术, 2020, 41(4): 812-819. |
XIANG L, CHEN H, TAN Y H, et al. Study of cavitation thermodynamic effect of liquid rocket engine inducer[J]. Journal of Propulsion Technology, 2020, 41(4): 812-819 (in Chinese). | |
16 | 任孝文, 李平, 陈宏玉, 等. 管路中常温推进剂的两相充填特性仿真[J]. 航空学报, 2022, 43(2): 125047. |
REN X W, LI P, CHEN H Y, et al. Simulation of two-phase filling characteristics of storable propellant in pipelines[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 125047 (in Chinese). | |
17 | 时素果, 王国玉. 一种修正的低温流体空化流动计算模型[J]. 力学学报, 2012, 44(2): 269-277. |
SHI S G, WANG G Y. A modified Kubota cavitation model for computations of cryogenic cavitating flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 269-277 (in Chinese). | |
18 | BRENNEN C E. Cavitation and bubble dynamics[M]. New York: Oxford University Press, 1995. |
19 | 季斌, 白晓蕊, 祝叶, 等. 水力机械空化水动力学的几个基础问题研究[J]. 水动力学研究与进展, 2017, 32(5): 542-550. |
JI B, BAI X R, ZHU Y, et al. A review of the fundamental investigations of cavitation in hydraulic machinery[J]. Chinese Journal of Hydrodynamics, 2017, 32(5): 542-550 (in Chinese). | |
20 | 潘中永, 袁寿其. 泵空化基础[M]. 镇江: 江苏大学出版社, 2013: 70-75. |
PAN Z Y, YUAN S Q. Fundamentals of cavitation in pumps[M]. Zhenjiang: Jiangsu University Press, 2013: 70-75 (in Chinese). | |
21 | FRANC J P, MICHEL J M. Fundamentals of cavitation[M]. Berlin: Springer, 2004. |
22 | LEMMON E W, MCLINDEN M O, HUBER M L. REFPROP: Reference fluid thermodynamic and transport properties: Version 9.1[DB/OL]. Gaithersburg: NIST, 2013. |
23 | PETKOVŠEK M, DULAR M. IR measurements of the thermodynamic effects in cavitating flow[J]. International Journal of Heat and Fluid Flow, 2013, 44: 756-763. |
24 | CHEN T R, HUANG B, WANG G Y, et al. Numerical study of cavitating flows in a wide range of water temperatures with special emphasis on two typical cavitation dynamics[J]. International Journal of Heat and Mass Transfer, 2016, 101: 886-900. |
25 | TSENG C C, SHYY W. Modeling for isothermal and cryogenic cavitation[J]. International Journal of Heat and Mass Transfer, 2010, 53(1-3): 513-525. |
26 | KIM J, SONG S J. Measurement of temperature effects on cavitation in a turbopump inducer[J]. Journal of Fluids Engineering, 2016, 138(1): 011304. |
27 | IGA Y, FURUSAWA T, SASAKI H. Interaction between thermodynamic suppression effect and Reynolds number promotion effect on cavitation in hot water[C]∥ Proceedings of the 10th International Symposium on Cavitation (CAV2018). Washington, D.C.: ASME Press, 2018: 576-580. |
28 | STAHL H A, STEPANOFF A J. Thermodynamic aspects of cavitation in centrifugal pumps[J]. Journal of Fluids Engineering, 1956, 78(8): 1691-1693. |
29 | MOORE R, RUGGERI R. Method for prediction of pump cavitation performance for various liquids, liquid temperatures, and rotative speeds: NASA-TN-D-5292[R]. Washington, D.C.: NASA, 1969. |
30 | HORD J. Cavitation in liquid cryogens Ⅱ—Hydrofoil: NASA CR-2156[R]. Washington, D.C.: NASA, 1973. |
31 | HORD J. Cavitation in liquid cryogens—Ogives: NASA CR-2242[R]. Washington, D.C.: NASA, 1973. |
32 | 朱佳凯. 低温空化非稳态特性和机理研究[D]. 杭州: 浙江大学, 2018. |
ZHU J K. Study on unsteady characteristics and mechanisms of cryogenic cavitation[D]. Hangzhou: Zhejiang University, 2018 (in Chinese). | |
33 | 时素果. 空化热力学效应及数值计算模型研究[D]. 北京: 北京理工大学, 2012. |
SHI S G. Study of cavitation thermodynamic and numerical model[D]. Beijing: Beijing Institute of Technology, 2012 (in Chinese). | |
34 | REBOUD J L, SAUVAGE B E, DESLAUX J. Partial cavitation model for cryogenic fluids[C]∥ Cavitation and Multiphase Flow Forum, 1990: 75-80. |
35 | DESHPANDE M, FENG J Z, MERKLE C L. Numerical modeling of the thermodynamic effects of cavitation[J]. Journal of Fluids Engineering, 1997, 119(2): 420-427. |
36 | 陈泰然. 低温介质空化流动特性及其热力学效应研究[D]. 北京: 北京理工大学, 2020. |
CHEN T R. Investigation of unsteady characteristics and thermodynamic effects of cryogenic cavitating flows[D]. Beijing: Beijing Institute of Technology, 2020 (in Chinese). | |
37 | FRANC J P, REBATTET C, COULON A. An experimental investigation of thermal effects in a cavitating inducer[J]. Journal of Fluids Engineering, 2004, 126(5): 716-723. |
38 | FRANC J P, PELLONE C. Analysis of thermal effects in a cavitating inducer using Rayleigh equation[J]. Journal of Fluids Engineering, 2007, 129(8): 974-983. |
39 | FRANC J P, BOITEL G, RIONDET M, et al. Thermodynamic effect on a cavitating inducer—Part I: Geometrical similarity of leading edge cavities and cavitation instabilities[J]. Journal of Fluids Engineering, 2010, 132(2): 021303. |
40 | EHRLICH D A, MURDOCK J W. A dimensionless scaling parameter for thermal effects on cavitation in turbopump inducers[J]. Journal of Fluids Engineering, 2015, 137(4): 041103. |
41 | CERVONE A, BRAMANTI C, RAPPOSELLI E, et al. Thermal cavitation experiments on a NACA 0015 hydrofoil[J]. Journal of Fluids Engineering, 2006, 128(2): 326-331. |
42 | 项乐, 谭永华, 陈晖, 等. 水温对空化流动影响的数值研究[J]. 推进技术, 2020, 41(6): 1324-1333. |
XIANG L, TAN Y H, CHEN H, et al. Numerical study of effects of water temperature on cavitating flow[J]. Journal of Propulsion Technology, 2020, 41(6): 1324-1333 (in Chinese). | |
43 | ACOSTA A J. An experimental study of cavitating inducers[C]∥ Proceedings of the Second O.N.R. Symposium on Naval Hydrodynamics. Washington, D.C.: [s.n.], 1958: 533-557. |
44 | BALL C L, MENG P R. Cavitation performance of 84°helical pump inducer operated in 37°R and 42°R liquid hydrogen: NASA TM X-1360[R]. Washington, D.C.: NASA, 1967. |
45 | MENG P R, MOORE R D. Cavitation and non-cavitation performance of 78° helical inducer in hydrogen: NASA TM X-2131[R]. Washington, D.C.: NASA, 1968. |
46 | KOVICH G. Comparison of predicted and experimental cavitation performance of 84° helical inducer in water and hydrogen: NASA TN D-7016[R]. Washington, D.C.: NASA, 1970. |
47 | KOVICH G. Experimental and predicted cavitation performance of 80.6° helical inducer in high-temperature water: NASA-TN-D-6809[R]. Washington, D.C.: NASA, 1970. |
48 | YOSHIDA Y, KIKUTA K, HASEGAWA S, et al. Thermodynamic effect on a cavitating inducer in liquid nitrogen[J]. Journal of Fluids Engineering, 2007, 129(3): 273-278. |
49 | KIKUTA K, YOSHIDA Y, WATANABE M, et al. Thermodynamic effect on cavitation performances and cavitation instabilities in an inducer[J]. Journal of Fluids Engineering, 2008, 130(11): 111302. |
50 | ITO Y, TANI N, KURISHITA Y, et al. New visualization test facility for liquid nitrogen and water cavitation in rotating inducer[C]∥ Proceedings of the 8th International Symposium on Cavitation. Singapore: Research Publishing Services, 2012: 74-85. |
51 | ITO Y, TSUNODA A, KURISHITA Y, et al. Experimental visualization of cryogenic backflow vortex cavitation with thermodynamic effects[J]. Journal of Propulsion and Power, 2015, 32(1): 71-82. |
52 | CERVONE A, TESTA R, BRAMANTI C, et al. Thermal effects on cavitation instabilities in helical inducers[J]. Journal of Propulsion and Power, 2005, 21(5): 893-899. |
53 | TORRE L, CERVONE A, PASINI A, et al. Experimental characterization of thermal cavitation effects on space rocket axial inducers[J]. Journal of Fluids Engineering, 2011, 133(11): 111303. |
54 | EHRLICH D A, VALENTINI D, PASINI A, et al. A water test facility liquid rocket engine turbopump cavitation testing[C]∥ Proceedings of the 7th International Symposium on Cavitation, 2009: 64-71. |
55 | LI X, LI J W, WANG J, et al. Study on cavitation instabilities in a three-bladed inducer[J]. Journal of Propulsion and Power, 2015, 31(4): 1051-1056. |
56 | 崔宝玲, 陈杰, 李晓俊, 等. 高速诱导轮离心泵内空化发展可视化实验与数值模拟[J]. 农业机械学报, 2018, 49(4): 148-155. |
CUI B L, CHEN J, LI X J, et al. Experiment and numerical simulation of cavitation evolution in high speed centrifugal pump with inducer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 148-155 (in Chinese). | |
57 | KAMIJO K, YOSHIDA M, TSUJIMOTO Y. Hydraulic and mechanical performance of LE-7 LOX pump inducer[J]. Journal of Propulsion and Power, 1993, 9(6): 819-826. |
58 | UCHIUMI M, KONNO A, KAMIJO K, et al. Improvement of inlet flow characteristics of LE-7A liquid hydrogen pump[C]∥ 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002: 4161. |
59 | YOSHINOBU T, YOSHIKI Y, YASUKAZU M, et al. Observations of oscillating cavitation of an inducer[J]. Journal of Fluids Engineering, 1997, 119(4): 775-781. |
60 | TSUJIMOTO Y, KAMIJO K, YOSHIDA Y. A theoretical analysis of rotating cavitation in inducers[J]. Journal of Fluids Engineering, 1993, 115(1): 135-141. |
61 | FRANC J P, BOITEL G, RIONDET M, et al. Thermodynamic effect on a cavitating inducer—Part Ⅱ: On-board measurements of temperature depression within leading edge cavities[J]. Journal of Fluids Engineering, 2010, 132(2): 1. |
62 | YOSHIDA Y, SASAO Y, OKITA K, et al. Influence of thermodynamic effect on synchronous rotating cavitation[J]. Journal of Fluids Engineering, 2007, 129(7): 871-876. |
63 | YOSHIDA Y, SASAO Y, WATANABE M, et al. Thermodynamic effect on rotating cavitation in an inducer[J]. Journal of Fluids Engineering, 2009, 131(9): 091302. |
64 | ITO Y, SATO Y, NAGASAKI T. Theoretical analyses of the number of backflow vortices on an axial pump or compressor[C]∥ Proceedings of ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. Washington, D.C.: ASME Press, 2019: 031103 |
65 | PACE G, VALENTINI D, PASINI A, et al. Analysis of flow instabilities on a three-bladed axial inducer in fixed and rotating frames[J]. Journal of Fluids Engineering, 2019, 141(4): 041104. |
66 | HADAVANDI R, PACE G, VALENTINI D, et al. Identification of cavitation instabilities on a three-bladed inducer by means of strain gages[J]. Journal of Fluids Engineering, 2020, 142(2): 021210. |
67 | LETTIERI C, SPAKOVSZKY Z, JACKSON D, et al. Characterization of cavitation instabilities in a four-bladed turbopump inducer[J]. Journal of Propulsion and Power, 2017, 34(2): 510-520. |
68 | KIM J, SONG S J. Measurement of thermal parameter and Reynolds number effects on cavitation instability onset in a turbopump inducer[J]. Journal of the Global Power and Propulsion Society, 2017, 1: H5DYU3. |
69 | KIM J, SONG S J. Visualization of rotating cavitation oscillation mechanism in a turbopump inducer[J]. Journal of Fluids Engineering, 2019, 141(9): 091103. |
70 | XIANG L, CHEN H, TAN Y H, et al. Study of thermodynamic cavitation effects in an inducer[J]. Journal of Propulsion and Power, 2019, 36(3): 312-322. |
71 | XIANG L, TAN Y H, CHEN H, et al. Experimental investigation of cavitation instabilities in inducer with different tip clearances[J]. Chinese Journal of Aeronautics, 2021, 34(9): 168-177. |
72 | LI W, WU P, YANG Y F, et al. Investigation of the cavitation performance in an engine cooling water pump at different temperature[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2021, 235(5): 1094-1102. |
73 | GE M M, ZHANG G J, PETKOVŠEK M, et al. Intensity and regimes changing of hydrodynamic cavitation considering temperature effects[J]. Journal of Cleaner Production, 2022, 338: 130470. |
74 | ZHANG H C, ZUO Z G, MØRCH K A, et al. Thermodynamic effects on Venturi cavitation characteristics[J]. Physics of Fluids, 2019, 31(9): 097107. |
75 | STEPANOFF A J. Cavitation in centrifugal pumps with liquids other than water[J]. Journal of Engineering for Power, 1961, 83(1): 79-89. |
76 | GELDER T F, MOORE R, RUGGERI R. Cavitation similarity considerations based on measured pressure and temperature depressions in cavitated regions of Freon 114: NASA-TN-D-3509[R]. Washington, D.C.: NASA, 1966. |
77 | MOORE R, RUGGERI R. Prediction of thermodynamic effects of developed cavitation based on liquid-hydrogen and Freon-114 data on scaled venturis[R]. Washington, D.C.: NASA, 1968. |
78 | BRENNEN C E. Hydrodynamics of pumps[M]. Norwich: Concepts ETI, 1994. |
[1] | Shengxiang TONG, Zhiwei SHI, Xi GENG, Lishuang WANG, Zhikun SUN, Qichang CHEN. Combinable samara aircraft and controlled separation technique [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629590-629590. |
[2] | Hailang SONG, Jiandong ZHANG, Guoqing SHI, Qiming YANG, Yaozhong ZHANG. Comprehensive evaluation techniques and methods for flight test of avionics fire control system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529687-529687. |
[3] | Ziguang LI, Peng CHENG, Qinglian LI, Xiao BAI, Pengjin CAO. Influence of backpressure on spray distribution characteristics of a gas-liquid pintle injector element [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128614-128614. |
[4] | Qingfeng ZHAO, Zhou ZHOU, Minghao LI, De XU. Propulsion/aerodynamic coupling modeling for distributed-propulsion-wing with induced wing configuration [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129252-129252. |
[5] | Guiwei ZHANG, Zhaoqing LIU, Lei ZHU, Heng ZHANG, Wei TIAN, Weiguang LI, Zhichun YANG. Research progress of ground flutter simulation test technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 29229-029229. |
[6] | Youpeng DENG, Jiaxuan FAN, Yan ZHENG, Zhenya WANG, Yongliang LYU, Yuxiao LI. Multiagent opponent modeling with incompleted information [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729782-729782. |
[7] | Xiaoyu CHENG, Peng HAN, Wei HE, Peng ZHANG, Xiaoxia HAN, Yingmei LI, You CAO. A new flywheel health status assessment model based on explicable belief rule base [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 172-184. |
[8] | Meng DONG, Yonghua TAN, Chuang HE, Lixiang XING, Ruiguo ZHAO. Hydraulic excitation experiment on frequency characteristic of simulated feed system after pump in a rocket engine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 127419-127419. |
[9] | Tianmei LI, Xiaosheng SI, Jianxun ZHANG. Data-model interactive remaining useful life prediction method for multi-sensor monitored linear stochastic degrading devices [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 227190-227190. |
[10] | Xiaoyu LIU, Liguo SUN, Wenqian TAN, Jinpeng WEI, Weijun WANG, Junkai JIAO. Modeling and evaluation of carrier aircraft pilots based on similar configuration decisions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126329-126329. |
[11] | Zehao CHEN, Hui CHEN, Yushan GAO, Hang ZHANG. Review and prospect of model-based fault diagnosis technology for liquid rocket engines [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629016-629016. |
[12] | Xiaopu ZHANG, Feng REN, Pengli XU, Zhimin LI, Caihong SU. Selection method of measuring parameters for rocket engine based on fault recognition [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 128522-128522. |
[13] | Huailu LI, Xu WANG, Xiao WANG, Tong ZHAO, Weiwei ZHANG. Aerodynamic modeling and flight simulation of maneuver flight at high angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128410-128410. |
[14] | Xiaofu BA, Hongqian XUE, Xining LI. Modeling and test of positioning accuracy for positioner with 3-axis randomly position connected in series [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 428469-428469. |
[15] | Zhiguang SHI, Yujie YANG, Zongyu ZUO. Multi-element coupled modeling and simulation for multi-capsule near-space airships [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 228451-228451. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341