[1] 李凤蔚. 空气与气体动力学引论[M]. 西安:西北工业大学出版社, 2007. LI F W. Introduction to aerodynamics[M]. Xi'an:Northwestern Polytechnical University Press, 2007(in Chinese). [2] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644. [3] THIBERT J J, RENEAUX J, SCHMITT R V. Onera activities on drag reduction[C]//Proceedings of the 14th Congress of ICAS. Bonn:ICAS, 1990:1053-1064. [4] HOLMES B, OBARA C J, MARTIN G L, et al. Manufacturing tolerances for natural laminar flow airframe surfaces:850863[S]. Warrendale:SAE, 1985. [5] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese). [6] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese). [7] URBIN G, KNIGHT D. Large-eddy simulation of a supersonic boundary layer using an unstructured grid[J]. AIAA Journal, 2001, 39(7):1288-1295. [8] SCHLATTER P, ÖRLV R. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2010, 659:116-126. [9] KRUMBEIN A, KRIMMELBEIN N, GRABE C. Streamline-based transition prediction techniques in an unstructured computational fluid dynamics code[J]. AIAA Journal, 2017, 55(5):1548-1564. [10] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413. [11] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615. [12] FUJINO M. Design and development of the HondaJet[J]. Journal of Aircraft, 2005, 42(3):755-764. [13] 乔志德. 翼型的选择与设计[M]//方宝瑞. 飞机气动布局设计. 北京:航空工业出版社, 1997:499-540. QIAO Z D. Design and chosen of the airfoils[M]//FANG B R. Aircraft aerodynamic configuration design. Beijing:Aviation Industry Press, 1997:499-540(in Chinese). [14] 乔志德, 赵文华, 李育斌, 等. 超临界自然层流翼型NPU-L72513的风洞试验研究[J]. 气动实验与测量控制, 1993, 7(2):40-45. QIAO Z D, ZHAO W H, LI Y B, et al. The transonic wind tunnel test research for the supercritical natural laminar airfoil NPU-L72513[J]. Journal of Experiments in Fluid Mechanics, 1993, 7(2):40-45(in Chinese). [15] 陈静, 宋文萍, 朱震, 等. 跨声速层流翼型的混合反设计/优化设计方法[J]. 航空学报, 2018, 39(12):122219. CHEN J, SONG W P, ZHU Z, et al. A hybrid inverse/direct optimization design method for transonic laminar flow airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122219(in Chinese). [16] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):121158. YANG T H, BAI J Q, SHI Y Y, et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese). [17] 邢宇, 罗东明, 余雄庆. 超临界层流翼型优化设计策略[J]. 北京航空航天大学学报, 2017, 43(8):1616-1624. XING Y, LUO D M, YU X Q. Optimization strategy of supercritical laminar flow airfoil design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8):1616-1624(in Chinese). [18] 史亚云, 郭斌, 刘倩, 等. 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6):1162-1174. SHI Y Y, GUO B, LIU Q, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1162-1174(in Chinese). [19] 李静, 刘艳萍, 高正红, 等. 跨音速自然层流翼型反设计研究[J]. 郑州大学学报(理学版), 2019, 51(1):95-100. LI J, LIU Y P, GAO Z H, et al. Inverse design of the transonic natural laminar flow airfoil[J]. Journal of Zhengzhou University (Natural Science Edition), 2019, 51(1):95-100(in Chinese). [20] 陈永彬, 唐智礼, 盛建达. 跨音速自然层流翼型多目标优化设计[J]. 计算物理, 2016, 33(3):283-296. CHEN Y B, TANG Z L, SHENG J D. Multi-objective optimization for natural laminar flow airfoil in transonic flow[J]. Chinese Journal of Computational Physics, 2016, 33(3):283-296(in Chinese). [21] 武宁, 唐鑫, 段卓毅, 等. 基于TSP方法的自然层流机翼转捩位置测量[J]. 实验流体力学, 2020, 34(6):66-70. WU N, TANG X, DUAN Z Y, et al. Transition measurement for the nature-laminar wing based on TSP technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6):66-70(in Chinese). [22] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998, 12(4):23-30. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4):23-30(in Chinese). [23] VAVRA A, SOLOMON W, DRAKE A. Comparison of boundary layer transition measurement techniques on a laminar flow wing[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005:1030. [24] 胡成行, 黄叙辉, 李红梅, 等. 应用脉动压力测试技术探测边界层转捩[J]. 流体力学实验与测量, 2002, 16(2):67-71. HU C H, HUANG X H, LI H M, et al. The location of boundary-layer transition detected by pressure fluctuation measurements[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(2):67-71(in Chinese). [25] 董昊, 耿玺, 陆纪椿, 等. 翼型边界层转捩热/油膜及红外测量技术的对比[J]. 南京航空航天大学学报, 2013, 45(6):792-796. DONG H, GENG X, LU J C, et al. Comparative investigation on hot film, oil film and infrared measurement techniques of airfoil boundary layer transition[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(6):792-796(in Chinese). [26] RICHTER K, SCHVLEIN E. Boundary-layer transition measurements on hovering helicopter rotors by infrared thermography[J]. Experiments in Fluids, 2014, 55(7):1755. [27] RAFFEL M, MERZ C B. Differential infrared thermography for unsteady boundary-layer transition measurements[J]. AIAA Journal, 2014, 52(9):2090-2093. [28] 黄辉, 熊健, 刘祥, 等. 基于温敏漆的边界层转捩测量技术研究[J]. 实验流体力学, 2019, 33(2):79-84. HUANG H, XIONG J, LIU X, et al. Study of the boundary layer transition detection technique based on TSP[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2):79-84(in Chinese). |