ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (3): 526232.doi: 10.7527/S1000-6893.2021.26232
• Articles • Previous Articles Next Articles
Kai XIONG(), Chunling WEI, Liansheng LI, Peng ZHOU
Received:
2021-08-16
Revised:
2021-08-23
Accepted:
2021-09-25
Online:
2023-02-15
Published:
2021-10-12
Contact:
Kai XIONG
E-mail:tobelove2001@vip.tom.com
Supported by:
CLC Number:
Kai XIONG, Chunling WEI, Liansheng LI, Peng ZHOU. Pulsar/inter-satellite LOS integrated navigation based on augmented QLEKF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526232.
1 | ZHANG H, JIAO R, XU L P. Orbit determination using pulsar timing data and orientation vector[J]. Journal of Navigation, 2019, 72(1): 155-175. |
2 | LIN H Y, XU B, LIU J X. Designing observation scheme in X-ray pulsar-based navigation with probability ellipsoid[J]. Advances in Space Research, 2019, 64(9): 1639-1651. |
3 | 刘劲, 韩雪侠, 宁晓琳, 等. 基于EMD-CS的脉冲星周期超快速估计[J]. 航空学报, 2020, 41(8): 623486. |
LIU J, HAN X X, NING X L, et al. Ultra-fast estimation of pulsar period based on EMD-CS[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 623486 (in Chinese). | |
4 | SU J Y, FANG H Y, BAO W M, et al. Fast simulation of X-ray pulsar signals at a spacecraft[J]. Acta Astronautica, 2020, 166: 93-103. |
5 | WINTERNITZ L B, HASSOUNEH M A, MITCHELL J W, et al. SEXTANT X-ray pulsar navigation demonstration: Additional on-orbit results[C]∥ 2018 SpaceOps Conference. Reston: AIAA, 2018: 2538. |
6 | 帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报, 2019, 27(3): 281-287. |
SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 281-287 (in Chinese). | |
7 | YU W H. Characterization of X-ray pulsar navigation for tracking closed earth orbits[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(10): 2310-2313. |
8 | HE Y B, MEI Z W, WANG L, et al. The X-ray pulsar navigation technology and recent progresses in deep space exploration[C]∥ Second Target Recognition and Artificial Intelligence Summit Forum. Bellingham: International Society for Optics and Photonics, 2020: 11427. |
9 | WANG Y D, ZHENG W, ZHANG D P. X-ray pulsar/starlight Doppler deeply-integrated navigation method[J]. Journal of Navigation, 2017, 70(4): 829-846. |
10 | XU Q, WANG H L, FENG L, et al. A novel X-ray pulsar integrated navigation method for ballistic aircraft[J]. Optik, 2018, 175: 28-38. |
11 | SUN J, GUO P B, WU T, et al. Pulsar/star tracker/INS integrated navigation method based on asynchronous observation model[J]. Journal of Aerospace Engineering, 2019, 32(5): 04019075. |
12 | SU Q Y, HUANG Y. Observability analysis and navigation algorithm for distributed satellites system using relative range measurements[J]. Journal of Systems Science and Complexity, 2018, 31(5): 1206-1226. |
13 | XIONG K, WEI C L, ZHANG H Y. Parallel model adaptive Kalman filtering for autonomous navigation with line-of-sight measurements[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233: 4017-4031. |
14 | LI Y, LI X, WU P, et al. Integrating satellite-to-satellite tracking with star tracker navigation for satellite constellation at earth-moon L2 point [J]. Journal of Chinese Inertial Technology, 2020, 28(1): 61-66. |
15 | WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation system with the errors in the planetary ephemerides for Earth-orbiting satellite[J]. Advances in Space Research, 2013, 51(12): 2394-2404. |
16 | WANG S, CUI P Y, GAO A, et al. Absolute navigation for Mars final approach using relative measurements of X-ray pulsars and Mars orbiter[J]. Acta Astronautica, 2017, 138: 68-78. |
17 | GUI M Z, NING X L, MA X, et al. A novel celestial aided time-differenced pulsar navigation method against ephemeris error of Jupiter for Jupiter exploration[J]. IEEE Sensors Journal, 2019, 19(3): 1127-1134. |
18 | 李晓宇, 姜宇, 金晶, 等. 脉冲星导航系统的星历表误差RKF校正算法[J]. 宇航学报, 2017, 38(1): 26-33. |
LI X Y, JIANG Y, JIN J, et al. RKF method for pulsar based navigation with emphasis error correction[J]. Journal of Astronautics, 2017, 38(1): 26-33 (in Chinese). | |
19 | 房建成, 宁晓琳, 马辛, 等. 深空探测器自主天文导航技术综述[J]. 飞控与探测, 2018, 1(1): 1-15. |
FANG J C, NING X L, MA X, et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control and Detection, 2018, 1(1): 1-15 (in Chinese). | |
20 | PSIAKI M L. Absolute orbit and gravity determination using relative position measurements between two satellites[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5): 1285-1297. |
21 | RISTIC B, FARINA A, BENVENUTI D, et al. Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry[J]. IEE Proceedings—Radar, Sonar and Navigation, 2003, 150(2): 65. |
22 | LEI M, VAN WYK B J, QI Y. Online estimation of the approximate posterior Cramer-Rao lower bound for discrete-time nonlinear filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 37-57. |
23 | 秦永元, 张洪钺,汪叔华. 卡尔曼滤波与组合导航原理[M]. 西安: 西北工业大学出版社, 1998. |
QIN Y Y, ZHANG H Y, WANG S H. Kalman filter and principle of integrated navigation[M]. Xi’an: Northwestern Polytechnical University Press, 1998 (in Chinese). | |
24 | WEI Q L, LEWIS F L, SUN Q Y, et al. Discrete-time deterministic Q-learning: A novel convergence analysis[J]. IEEE Transactions on Cybernetics, 2017, 47(5): 1224-1237. |
25 | LUO B, WU H N, HUANG T W. Optimal output regulation for model-free quanser helicopter with multistep Q-learning[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4953-4961. |
26 | LOW E S, ONG P, CHEAH K C. Solving the optimal path planning of a mobile robot using improved Q-learning[J]. Robotics and Autonomous Systems, 2019, 115: 143-161. |
27 | XIONG K, WEI C L, ZHANG H Y. Q⁃learning for noise covariance adaptation in extended Kalman filter[J]. Asian Journal of Control, 2021, 23(4): 1803-1816. |
28 | SHEIKH S I, PINES D J, RAY P S, et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 49-63. |
29 | BUSSE F D, HOW J P, SIMPSON J. Demonstration of adaptive extended Kalman filter for low-earth-orbit formation estimation using CDGPS[J]. Navigation, 2003, 50(2): 79-93. |
30 | HANLON P D, MAYBECK P S. Multiple-model adaptive estimation using a residual correlation Kalman filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 393-406. |
[1] | Xin ZOU, Minglei LI, Daiyin ZHU, Wei RAO, Chengzhi HAN, Ying LI. Application of morphological parameter identification for Mars parachute during opening process [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 227007-227007. |
[2] | Qiang XU, Hongliang CUI, Bangping DING, Aigang ZHAO, Yang ZHAO. Two-stage strong tracking differential Kalman filter for X-ray pulsar navigation with coloured noise [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526120-526120. |
[3] | Qingyong ZHOU, Linli YAN, Liansheng LI, Laiping FENG, Yongqiang SHI, Pengfei SUN, Liu FANG, Long WANG. On⁃orbit stability analysis of FXPT on XPNAV⁃1 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526610-526610. |
[4] | Junqiu YIN, Yunpeng LIU, Xiaobin TANG. Spacecraft positioning method based on pulsar-like X-ray beacon [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526596-526596. |
[5] | Kun JIANG, Wenhai JIAO, Xiaolong HAO, Ying LIU, Yidi WANG, Xinyuan ZHANG, Ji GUO. Scientific experiments and achievements of XPNAV-1 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526611-526611. |
[6] | LIU Zhenbao, MA Bodi, GAO Honggang, YUAN Jinbiao, JIANG Feihong, ZHANG Junhong, ZHAO Wen. Adaptive morphological network based UAV target tracking algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524904-524904. |
[7] | DUAN Dengyan, PEI Jiatao, ZU Rui, LI Jianbo. Power optimization and control of motor variable-pitch propeller propulsion system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 623933-623933. |
[8] | WANG Run, YU Feng, ZHOU Shibing, LIU Fangwu. Algorithm for relative navigation between free-flying robots and space station based on 3D Zernike moments [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324298-324298. |
[9] | YU Yinan, LIANG Yi, SONG Tao, LIN Defu. Full flight envelope modeling of quadrotor vehicles based on model stitching technique [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S2): 724321-724321. |
[10] | GUAN Xiangzhong, CAI Chenxiao, ZHAI Wenhua, WANG Lei, SHAO Peng. Indoor integrated navigation system for unmanned aerial vehicles based on neural network predictive compensation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S1): 723790-723790. |
[11] | ZHU Yunfeng, SUN Yongrong, ZHAO Wei, HUANG Bin, WU Ling. Relative navigation algorithm for non-cooperative target with adaptive modification of multiplicative noise [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(7): 322884-322884. |
[12] | WANG Kai, XU Shijie, LI Kang, TANG Liang. Error analysis and formation design for double line-of-sight measuring relative navigation method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(9): 322014-322028. |
[13] | LI Min, ZHANG Yingchun, GENG Yunhai, ZHU Baolong, LI Huayi. A robust extended Kalman filter algorithm for X-ray pulsar navigation system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(4): 1305-1315. |
[14] | FENG Lei, WANG Hongli, SI Xiaosheng, YANG Xiaojun, WANG Biaobiao. Real-time residual life prediction based on semi-stochastic filter and expectation maximization algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(2): 555-563. |
[15] | HANG Yijun, LIU Jianye, LI Rongbing, SUN Yongrong. MEMS IMU/LADAR Integrated Navigation Method Based on Mixed Feature Match [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(9): 2583-2592. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341