[1] QI S J, JING L, WANG Y L. Overview of UAV system and development trend[J]. Aerodynamic Missile Journal, 2018(4): 17-21 (in Chinese). 祁圣君, 井立, 王亚龙. 无人机系统及发展趋势综述[J]. 飞航导弹, 2018(4): 17-21. [2] JIA Y N, TIAN S Y, LI Q. Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723738 (in Chinese). 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1): 723738. [3] WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023732 (in Chinese). 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 023732. [4] ZHOU R S, ZHOU W, WANG D P, et al. Overview of UAV link wing system technology[C]//The 5th Joint Conference of Aerospace Propulsion (JCAP) Technical Conference. Beijing: CAST Alliance for Aero-Engine Industry and Acadmy, 2020: 285-293 (in Chinese). 周睿孙, 周伟, 王道平, 等. 无人机链翼系统技术综述[C]//第五届空天动力联合会议. 北京: 中国科协航空发动机产学联合体, 2020: 285-293. [5] ANDERSON C. Dangerous experiments: wingtip coupling at 15, 000 feet[J]. Flight Journal, 2000, 5(6): 64-72. [6] MICHEL M. Tip-Tow to the Tom-Tom[EB/OL]. (2009-10-8)[2020-12-20]. https://www.kaiserslauternamerican.com/tip-tow-to-the-tom-tom/. [7] MILLER J. Project "Tom-Tom"[J]. Aerophile, 1977, 1(12): 161-164. [8] NEELY R H. Flutter tests of a 1/25-scale model of the B-36 J/RF-84F tip-coupled airplane configuration in the Langley 19-foot pressure tunnel: NACA RM SL56A256 Virginia: NASA Langley Research Center, 1956. [9] KÖTHE A, BEHRENS A, HAMANN A, et al. Closed-Loop flight tests with an unmanned experimental multi-body aircraft[C]//17th International Forum on Aeroelasticity and Structural Dynamics. Como: IFASD, 2017. [10] CRACAU D. The AlphaLink compound aircraft: aviation outside the Box![EB/OL]. (2020-10-19)[2020-12-28]. https://www.kickstarter.com/projects/alphalink-aero/take-off-1. [11] WLACH S, BALMER G, HERMANN M, et al. ELAHA-elastic aircraft for high altitudes concept and current development state of an unconventional stratospheric UAV[C]//23rd ESA Symposium on European Rocket and Balloon Programmes and Related Research. Visby: ESA, 2017. [12] MAGILL S. Compound aircraft transport study: Wingtip-docking compared to formation flight[C]//41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. [13] MAGILL S, DURHAM W. Modeling and simulation of wingtip-docked flight[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2002. [14] MONTALVO C. Meta aircraft flight dynamics and controls[D]. Atlanta: Georgia Institute of Technology, 2014. [15] MONTALVO C, COSTELLO M. Meta aircraft flight dynamics[J]. Journal of Aircraft, 2014, 52(1): 107-115. [16] MONTALVO C, COSTELLO M. Meta aircraft connection dynamics[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2012. [17] CARITHERS C, MONTALVO C. Experimental control of two connected fixed wing aircraft[J]. Aerospace, 2018, 5(4): 113. [18] COBAR M, MONTALVO C. Takeoff and landing of a wing-tip-connected meta aircraft with feedback control[J]. Journal of Aircraft, 2021, 58(4): 733-742. [19] COOPER J R, ROTHHAAR P M. Dynamics and control of In-flight wing tip docking[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(11): 2327-2337. [20] ZHANG L G, WANG F, TONG G, et al. Conjoined aircraft with straight layout: CN102658866A[P]. 2012-09-12 (in Chinese). 张利国, 王锋, 佟刚, 等. 一种平直布局的联体飞机: CN102658866A[P]. 2012-09-12. [21] ZHANG L G, WANG F, TONG G, et al. Axisymmetric conjoined airplane of unit airplanes with flying wings: CN202686762U[P]. 2013-01-23 (in Chinese). 张利国, 王锋, 佟刚, 等. 一种轴对称布局具有飞翼结构单元飞机的联体飞机: CN202686762U[P]. 2013-01-23. [22] ZHANG L G, WANG F, TONG G, et al. Connection device for conjoined airplane: CN202686750U[P]. 2013-01-23 (in Chinese). 张利国, 王锋, 佟刚, 等. 用于联体飞机的连接装置: CN202686750U[P]. 2013-01-23. [23] AN C, XIE C, MENG Y, et al. Flight mechanical analysis and test of unmanned multi-body aircraft[C]//International Forum on Aeroelasticity and Structural Dynamics. Savannah: IFASD, 2019. [24] YANG Y P, ZHANG Z J, YING P, et al. Flexible modular swarming UAV: innovative, opportunities, and technical challenges[J]. Flight Dynamics, 2021, 39(2): 1-9, 15 (in Chinese). 杨延平, 张子健, 应培, 等. 集群组合式柔性无人机: 创新、机遇及技术挑战[J]. 飞行力学, 2021, 39(2): 1-9, 15. [25] WU M J, SHI Z W, XIAO T H, et al. Effect of wingtip connection on the energy and flight endurance performance of solar aircraft[J]. Aerospace Science and Technology, 2021, 108: 106404. [26] ZHOU R S, ZHOU W, WANG D P, et al. Design of multi-UAV formation planning system based on Matlab and QGC. [J]. Journal of Rocket Force University of Engineering, 2020, 34(3): 18-24 (in Chinese). 周睿孙, 周伟, 王道平, 等. 基于Matlab和QGC联合的多无人机规划调度系统设计[J]. 火箭军工程大学学报, 2020, 34(3): 18-24. [27] ZHOU W, MA P Y, ZHOU R S, et al. Attitude control of two chained wing UAVs based on PID principle[C]//Unmanned Systems Summit 2021 Proceedings. Changsha: National University of Defense Technology, 2021 (in Chinese). 周伟, 马培洋, 周睿孙, 等. 基于PID原理的双机链翼无人机姿态控制[C]//2021年无人系统高峰论坛(USS 2021)论文集. 长沙: 国防科技大学, 2021. [28] ZHOU R S. Design, analysis and feasibility study of dual-plane link-wing combined platform[D]. Xi'an: Rocket Force University of Engineering, 2020: 71-78 (in Chinese). 周睿孙. 双机链翼组合平台设计、分析及其飞行可行性研究[D]. 西安: 火箭军工程大学, 2020: 71-78. [29] BEHRENS A, GRUND T, EBERT C, et al. Investigation of the aerodynamic interaction between two wings in a parallel flight with close lateral proximity[J]. CEAS Aeronautical Journal, 2020, 11(2): 553-563. [30] MARTIN S. Model aircraft aerodynamics[M]. XIAO Z Y, MA D L, translated. Beijing: Aviation Industry Press, 2007 (in Chinese). MARTIN S. 模型飞机空气动力学[M]. 肖治垣, 马东立, 译. 北京: 航空工业出版社, 2007. [31] CHEN L, DUAN D P. Flight principle of large pneumatic/static aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2015 (in Chinese). 陈丽, 段登平. 大气动/静飞行器飞行原理[M]. 上海: 上海交通大学出版社, 2015. [32] LIU H. Aircraft general design[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2019 (in Chinese). 刘虎. 飞机总体设计[M]. 北京: 北京航空航天大学出版社, 2019. [33] ZHU B L. UAV aerodynamics[M]. Beijing: Aviation Industry Press, 2006 (in Chinese). 朱宝鎏. 无人飞机空气动力学[M]. 北京: 航空工业出版社, 2006. [34] YANG B W. Formulization of standard atmospheric parameters[J]. Journal of Astronautics, 1983, 4(1): 83-86 (in Chinese). 杨炳尉. 标准大气参数的公式表示[J]. 宇航学报, 1983, 4(1): 83-86. [35] MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418 (in Chinese). 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418. [36] NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al. Investigation of the Helios prototype aircraft mishap volume Ⅰ mishap report: 23681-2199[R]. Washington, D.C. : NASA, 2004. [37] GOMEZ M L, PARKS R, WOODWORTH A J. Wing tip docking system for aircraft: US8172172B2[P]. 2012-05-08. [38] GU L X, GONG C L. Critical technology analysis of multidisciplinary design optimization in flight vehicle[J]. Spacecraft Engineering, 2007, 16(3): 33-37 (in Chinese). 谷良贤, 龚春林. 飞行器多学科设计优化关键技术分析[J]. 航天器工程, 2007, 16(3): 33-37. [39] HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121731 (in Chinese). 黄江涛, 周铸, 刘刚, 等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018, 39(5): 121731. [40] HUANG J T, LIU G, GAO Z H, et al. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623404 (in Chinese). 黄江涛, 刘刚, 高正红, 等. 飞行器多学科耦合伴随体系的现状与发展趋势[J]. 航空学报, 2020, 41(5): 623404. [41] LI N, BU S H, SHANG B L, et al. Aircraft intelligent design: visions and key technologies[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524752 (in Chinese). 李霓, 布树辉, 尚柏林, 等. 飞行器智能设计愿景与关键问题[J]. 航空学报, 2021, 42(4): 524752. [42] ZHOU W, LI S, WANG X R, et al. Sorting method for design specifications of solar powered UAV based on FQFD[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 221299 (in Chinese). 周伟, 李赛, 王学仁, 等. 基于FQFD的太阳能无人机设计指标排序方法[J]. 航空学报, 2018, 39(2): 221299. [43] WANG W. Exploring nonlinear aeroelastic and flight dynamics of solar-powered UAV[D]. Xi'an: Northwestern Polytechnical University, 2015 (in Chinese). 王伟. 太阳能无人机非线性气动弹性及飞行力学研究[D]. 西安: 西北工业大学, 2015. [44] WANG W, ZHOU Z, ZHU X P, et al. Exploring aeroelastic stability of very flexible solar powered UAV with geometrically large deformation[J]. Journal of Northwestern Polytechnical University, 2015, 33(1): 1-8 (in Chinese). 王伟, 周洲, 祝小平, 等. 几何大变形太阳能无人机非线性气动弹性稳定性研究[J]. 西北工业大学学报, 2015, 33(1): 1-8. [45] DUAN J B, ZHOU Z, WANG W, et al. A method for aeroelastic load redistribution of very flexible wing with a high-aspect-ratio[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 799-809 (in Chinese). 段静波, 周洲, 王伟, 等. 大展弦比大柔性机翼载荷分布求解的一种方法[J]. 航空学报, 2016, 37(3): 799-809. [46] YU Z Q, ZHANG Y M, JIANG B, et al. Distributed adaptive fault-tolerant close formation flight control of multiple trailing fixed-wing UAVs[J]. ISA Transactions, 2020, 106: 181-199. [47] LIU Z Y, TAO Y, SHI Z W, et al. Investigation on formation flight in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 20-25 (in Chinese). 刘志勇, 陶洋, 史志伟, 等. 编队飞行风洞实验研究[J]. 实验流体力学, 2016, 30(4): 20-25. [48] XIANG J W, ZHANG X J, ZHAO S W, et al. Recent advance in high-aspect-ratio composite wing[J]. Journal of Harbin Institute of Technology, 2017, 49(10): 1-14 (in Chinese). 向锦武, 张雪娇, 赵仕伟, 等. 大展弦比复合材料机翼研究进展[J]. 哈尔滨工业大学学报, 2017, 49(10): 1-14. [49] XIANG J W, KAN Z, SHAO H Y, et al. A review of key technologies for long-endurance unmanned aerial vehicle[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 57-77 (in Chinese). 向锦武, 阚梓, 邵浩原, 等. 长航时无人机关键技术研究进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 57-77. [50] GONG C L, CHI F H, GU L X, et al. Optimal control method for distributed morphing aircraft based on Karhunen-Loève expansion[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121518 (in Chinese). 龚春林, 赤丰华, 谷良贤, 等. 基于Karhunen-Loève展开的分布式变体飞行器最优控制方法[J]. 航空学报, 2018, 39(2): 121518. [51] FU X. Design and aeroelasticity characteristics analysis of flexible wing with variable chordwise camber[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). 伏欣. 弦向可变弯度机翼设计及气动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [52] DONG W Q, HE F. Hierarchical and distributed generation of information interaction topology for large scale UAV formation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324380 (in Chinese). 董文奇, 何锋. 大规模UAV编队信息交互拓扑的分级分布式生成[J]. 航空学报, 2021, 42(6): 324380. [53] WANG C, GAO C Z. Research on communication networks topology reconstruction and key technologies of UAV swarm[J]. Ship Electronic Engineering, 2021, 41(5): 49-52, 82 (in Chinese). 王璨, 高辰子. 无人机集群通信网络拓扑重构及关键技术研究[J]. 舰船电子工程, 2021, 41(5): 49-52, 82. [54] FU X W, WEI K, LI B, et al. Formation control method of UAV cluster based on alliance[J]. Systems Engineering and Electronics, 2019, 41(11): 2559-2572 (in Chinese). 符小卫, 魏可, 李斌, 等. 基于联盟的无人机集群编队控制方法[J]. 系统工程与电子技术, 2019, 41(11): 2559-2572. [55] YANG J, XI J X, WANG C, et al. Summary of multi-UAV cooperative patrol task planning methods[J]. Flight Dynamics, 2018, 36(5): 1-6 (in Chinese). 杨杰, 席建祥, 王成, 等. 多无人机协同巡视任务规划方法综述[J]. 飞行力学, 2018, 36(5): 1-6. [56] LI B. Research on the modeling and optimization method of mission planning for UAV swarm system[D]. Xi'an: Xidian University, 2020: 10-12. (in Chinese) 李博. 集群无人机系统任务规划建模与优化方法研究[D]. 西安: 西安电子科技大学, 2020: 10-12. [57] JIA T, XU H H, YAN H T, et al. Decentralized multi-agent task planning for heterogeneous UAV swarm[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(4): 528-538. [58] WANG R R, WEI W L, YANG M C, et al. Task allocation of multiple UAVs considering cooperative route planning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724234 (in Chinese). 王然然, 魏文领, 杨铭超, 等. 考虑协同航路规划的多无人机任务分配[J]. 航空学报, 2020, 41(S2): 724234. |