[1] YOU Y C. An overview of the advantages and concerns of hypersonic inward turning inlets:AIAA-2011-2269[R]. Reston:AIAA, 2011. [2] GOLDFELD M A, NESTOULIA R V. Numerical and experimental studies of 3D hypersonic inlet[J]. Journal of Thermal Science, 2002, 11(3):198-206. [3] ZUO F Y, MÖLDER S. Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle engines[J]. Progress in Aerospace Sciences, 2019, 106:108-144. [4] 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3):43-59. QIAO W Y, YU A Y. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3):43-59(in Chinese). [5] LI Y M, LI Z F, YANG J M. Tomography-like flow visualization of a hypersonic inward-turning inlet[J]. Chinese Journal of Aeronautics, 2021, 34(1):44-49. [6] 张文浩, 柳军, 丁峰. 内转式进气道/冯·卡门乘波体一体化设计方法[J]. 航空学报, 2020, 41(3):123502. ZHANG W H, LIU J, DING F. Integrated design method of inward turning inlet/Von Karman waverider[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):123502(in Chinese). [7] 尤延铖, 梁德旺. 内乘波式进气道内收缩基本流场研究[J]. 空气动力学学报, 2008, 26(2):203-207. YOU Y C, LIANG D W. Investigation of internal compression flowfield for internal waverider-derived inlet[J]. Acta Aerodynamica Sinica, 2008, 26(2):203-207(in Chinese). [8] SHOESMITH B, MÖLDER S, OGAWA H, et al. Shock reflection in axisymmetric internal flows[C]//International Conference on RailNewcastle Talks. Cham:Springer, 2017:355-366. [9] 姬隽泽, 李祝飞, 张恩来, 等. 近轴对称内收缩流场中的激波干扰[J]. 实验流体力学, 2019, 33(5):2-10. JI J Z, LI Z F, ZHANG E L, et al. Shock interactions in near-axisymmetric internal contraction flows[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5):2-10(in Chinese). [10] MÖLDER S. Internal, axisymmetric, conical flow[J]. AIAA Journal, 1967, 5(7):1252-1255. [11] TIMOFEEV E, MÖLDER S, VOINOVICH P, et al. Shock wave reflections in axisymmetric flow[C]//Proceedings of the 23rd International Symposium on Shock Waves, 2001:1486-1493. [12] ISAKOVA N P, KRAIKO A N, P'YANKOV K S, et al. The amplification of weak shock waves in axisymmetric supersonic flow and their reflection from an axis of symmetry[J]. Journal of Applied Mathematics and Mechanics, 2012, 76(4):451-465. [13] GOUNKO Y P. Patterns of steady axisymmetric supersonic compression flows with a Mach disk[J]. Shock Waves, 2017, 27(3):495-506. [14] FILIPPI A A, SKEWS B W. Supersonic flow fields resulting from axisymmetric internal surface curvature[J]. Journal of Fluid Mechanics, 2017, 831:271-288. [15] SMART M K, TREXLER C A. Mach 4 performance of hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 2004, 20(2):288-293. [16] 王卫星, 李博, 郭荣伟. 不同反压下椭圆形隔离段流场特征与气动性能[J]. 航空动力学报, 2010, 25(3):647-653. WANG W X, LI B, GUO R W. Flow characteristic and aerodynamic performance in elliptic shape isolator at different back pressures[J]. Journal of Aerospace Power, 2010, 25(3):647-653(in Chinese). [17] ZHANG E L, LI Z F, JI J Z, et al. Converging near-elliptic shock waves[J]. Journal of Fluid Mechanics, 2021, 909:A2. [18] 姬隽泽, 张恩来, 司东现, 等. 内聚锥形激波的非均匀强化与结构演变特征[J]. 气体物理, 2021, 6(3):1-14. JI J Z, ZHANG E L, SI D X, et al. Non-uniform intensification behaviors of a converging conical shock wave[J]. Physics of Gases, 2021, 6(3):1-14(in Chinese). [19] RYLOV A I. On the impossibility of regular reflection of a steady-state shock wave from the axis of symmetry[J]. Journal of Applied Mathematics and Mechanics, 1990, 54(2):201-203. [20] MÖLDER S. Curved aerodynamic shock waves[D]. Montreal:McGill University, 2012:32-73. [21] MÖLDER S. Curved shock theory[J]. Shock Waves, 2016, 26(4):337-353. [22] MÖLDER S. Flow behind concave shock waves[J]. Shock Waves, 2017, 27(5):721-730. [23] 杨旸. 三维激波相互作用的复杂流动研究[D]. 北京:中国科学院大学, 2012:48-63. YANG Y. Investigations on the complex flows induced by three-dimensional shock interactions[D]. Beijing:University of Chinese Academy of Sciences, 2012:48-63(in Chinese). [24] 项高翔. 三维激波干扰理论与应用研究[D]. 北京:中国科学院大学, 2017:37-69. XIANG G X. Theory of three-dimensional shock interaction and its application[D]. Beijing:University of Chinese Academy of Sciences, 2017:37-69(in Chinese). [25] ANDERSON JR J D. A survey of modern research in hypersonic aerodynamics:AIAA-1984-1578[R]. Reston:AIAA, 1984. [26] ANDERSON JR J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston:AIAA, 2006:103-176. [27] HAN Z Y, YIN X Z. Shock dynamics[M]. Beijing:Science Press, 1993:1-62. [28] 谢鹏. 两个三波点相互作用的激波动力学分析和气体动力学分析[D]. 合肥:中国科学技术大学, 2004:3-4. XIE P. Shock dynamics and gas dynamics analysis of the interaction of two triple points[D]. Hefei:University of Science and Technology of China, 2004:3-4(in Chinese). [29] 詹东文. 一种激波增强管壁型线设计方法[D]. 合肥:中国科学技术大学, 2018:15-28. ZHAN D W. An investigation of the channel profile design for shock wave enhancement[D]. Hefei:University of Science and Technology of China, 2018:15-28(in Chinese). [30] 彭荣强. 几何激波动力学在激波绕射反射和聚焦中的应用[J]. 四川工业学院学报, 1996, 15(1):50-54. PENG R Q. Applications of geometrical shock dynamics in shock diffraction reflection and focus[J]. Journal of Sichuan Institute of Technology, 1996, 15(1):50-54(in Chinese). [31] HENSHAW W D, SMYTH N F, SCHWENDEMAN D W. Numerical shock propagation using geometrical shock dynamics[J]. Journal of Fluid Mechanics, 1986, 171:519-545. [32] APAZIDIS N. Focusing of strong shocks in an elliptic cavity[J]. Shock Waves, 2003, 13(2):91-101. [33] RIDOUX J, LARDJANE N, MONASSE L, et al. Beyond the limitation of geometrical shock dynamics for diffraction over wedges[J]. Shock Waves, 2019, 29(6):833-855. [34] ZHAI Z G, LIU C L, QIN F H, et al. Generation of cylindrical converging shock waves based on shock dynamics theory[J]. Physics of Fluids, 2010, 22(4):041701. [35] ZHAN D W, LI Z F, YANG J T, et al. Note:A contraction channel design for planar shock wave enhancement[J]. Review of Scientific Instruments, 2018, 89(5):056104. [36] CHESTER W. CXLV. The quasi-cylindrical shock tube[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(371):1293-1301. [37] CHISNELL R F. The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves[J]. Journal of Fluid Mechanics, 1957, 2(3):286-298. [38] WHITHAM G B. On the propagation of shock waves through regions of non-uniform area or flow[J]. Journal of Fluid Mechanics, 1958, 4(4):337-360. [39] WHITHAM G B. A new approach to problems of shock dynamics Part I Two-dimensional problems[J]. Journal of Fluid Mechanics, 1957, 2(2):145-171. [40] GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes[J]. Mathematics of Computation, 1998, 67(221):73-85. [41] AKIMA H. A new method of interpolation and smooth curve fitting based on local procedures[J]. Journal of the ACM, 1970, 17(4):589-602. [42] 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 2版. 北京:高等教育出版社, 2012:135-143. TONG B G, KONG X Y, DENG G H. Gas dynamics[M]. 2nd ed. Beijing:Higher Education Press, 2012:135-143(in Chinese). [43] 王继海. 二维非定常流和激波[M]. 北京:科学出版社, 1994:149-271. WANG J H. Two-dimensional unsteady flow and shock waves[M]. Beijing:Science Press, 1994:149-271(in Chinese). |