[1] GROSSMAN K, BOHDAN C, VANWIE D. Sparkjet actuators for flow control[C]//41 st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003. [2] CYBYK B, LAND H, SIMON D, et al. Experimental characterization of a supersonic flow control actuator[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. [3] 李应红, 吴云. 等离子体激励调控流动与燃烧的研究进展与展望[J]. 中国科学: 技术科学, 2020, 50(10): 1252-1273. LI Y H, WU Y. Research progress and outlook of flow control and combustion control using plasma actuation[J]. Scientia Sinica (Technologica), 2020, 50(10): 1252-1273 (in Chinese). [4] 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). [5] BELINGER A, HARDY P, BARRICAU P, et al. Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator[J]. Journal of Physics D: Applied Physics, 2011, 44(36): 365201. [6] POPKIN S H, CYBYK B, LAND B, et al. Recent performance-based advances in SparkJet actuator design for supersonic flow applications[C]//51 st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. [7] ZHOU Y, XIA Z X, WANG L, et al. Discharge and electrothermal efficiency analysis of capacitive discharge plasma synthetic jet actuator in single-shot mode[J]. Sensors and Actuators A: Physical, 2019, 287: 102-112. [8] ZONG H H. Influence of nondimensional heating volume on efficiency of plasma synthetic jet actuators[J]. AIAA Journal, 2017, 56(5): 2075-2078. [9] ZHANG Y C, TAN H J, HUANG H X, et al. Transient flow patterns of multiple plasma synthetic jets under different ambient pressures[J]. Flow, Turbulence and Combustion, 2018, 101(3): 741-757. [10] WU S Q, LIU X Y, HUANG G W, et al. Influence of high-voltage pulse parameters on the propagation of a plasma synthetic jet[J]. Plasma Science and Technology, 2019, 21(7): 074007. [11] SHIN J Y, KIM H J, AHN S, et al. A parametric study and analytic model development of sparkjet actuator using CFD[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019. [12] YANG G, YAO Y F, FANG J, et al. Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without SparkJet control[J]. Chinese Journal of Aeronautics, 2016, 29(3): 617-629. [13] DONG H, GENG X, SHI Z W, et al. On evolution of flow structures induced by nanosecond pulse discharge inside a plasma synthetic jet actuator[J]. Japanese Journal of Applied Physics, 2019, 58(2): 028002. [14] 王林. 等离子体高能合成射流及其超声速流动控制机理研究[D]. 长沙: 国防科学技术大学, 2014. WANG L. Principle of plasma high-energy synthetic jet and supersonic flow control[D]. Changsha: National University of Defense Technology, 2014 (in Chinese). [15] 吕元伟, 单勇, 张靖周, 等. 火花型激励合成射流瞬时流场测试[J]. 航空动力学报, 2017, 32(10): 2371-2377. LYU Y W, SHAN Y, ZHANG J Z, et al. Measurement on the instantaneous flow fields of a spark-excited synthetic jet[J]. Journal of Aerospace Power, 2017, 32(10): 2371-2377 (in Chinese). [16] 宋慧敏, 吴俊锋, 张志波, 等. 三电极合成射流激励器电极布局与电源系统的匹配特性[J]. 高电压技术, 2017, 43(6): 1784-1791. SONG H M, WU J F, ZHANG Z B, et al. Arrangement of three-electrode synthetic jet actuator and its matching characteristics with power system[J]. High Voltage Engineering, 2017, 43(6): 1784-1791 (in Chinese). [17] ZHANG Z B, WU Y, JIA M, et al. The multichannel discharge plasma synthetic jet actuator[J]. Sensors and Actuators A: Physical, 2017, 253: 112-117. [18] ZHOU Y, XIA Z X, LUO Z B, et al. Experimental characteristics of a two-electrode plasma synthetic jet actuator array in serial[J]. Chinese Journal of Aeronautics, 2018, 31(12): 2234-2247. [19] 邵涛, 韩磊, 罗振兵, 等. 基于Marx发生器的等离子体合成射流串联放电装置及方法: CN106050593B[P]. 2018-05-25. SHAO T, HAN L, LUO Z B, et al. Plasma synthesis jet flow serial connection discharge device based on Marx generator: CN106050593B[P]. 2018-05-25 (in Chinese). [20] ZONG H H, PELT T, KOTSONIS M. Airfoil flow separation control with plasma synthetic jets at moderate Reynolds number[J]. Experiments in Fluids, 2018, 59(11): 1-19. [21] CHEDEVERGNE F, LéON O, BODOC V, et al. Experimental and numerical response of a high-Reynolds-number M=0.6 jet to a Plasma Synthetic Jet actuator[J]. International Journal of Heat and Fluid Flow, 2015, 56: 1-15. [22] 孙健, 牛中国, 刘汝兵, 等. 基于等离子体合成射流的飞翼布局模型主动流动控制风洞实验研究[J]. 实验流体力学, 2019, 33(4): 81-88. SUN J, NIU Z G, LIU R B, et al. The wind tunnel test of the active flow control on the flying wing model based on the plasma synthetic jet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 81-88 (in Chinese). [23] EMERICK T, ALI M Y, FOSTER C, et al. SparkJet characterizations in quiescent and supersonic flowfields[J]. Experiments in Fluids, 2014, 55(12): 1-21. [24] ZHOU Y, XIA Z X, LUO Z B, et al. Characterization of three-electrode SparkJet actuator for hypersonic flow control[J]. AIAA Journal, 2018, 57(2): 879-885. [25] WANG H Y, LI J, JIN D, et al. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation[J]. Acta Astronautica, 2018, 142: 45-56. [26] TANG M X, WU Y, WANG H Y, et al. Characterization of transverse plasma jet and its effects on ramp induced separation[J]. Experimental Thermal and Fluid Science, 2018, 99: 584-594. [27] 顾仁勇, 单勇, 张靖周, 等. 火花型合成射流控制运输机后体流动分离的数值研究[J]. 航空动力学报, 2018, 33(8): 1855-1863. GU R Y, SHAN Y, ZHANG J Z, et al. Numerical study on transport aircraft after-body flow separation control by spark jet[J]. Journal of Aerospace Power, 2018, 33(8): 1855-1863 (in Chinese). [28] ZHOU Y, XIA Z X, LUO Z B, et al. A novel ram-air plasma synthetic jet actuator for near space high-speed flow control[J]. Acta Astronautica, 2017, 133: 95-102. [29] LI J F, ZHANG X B. Active flow control for supersonic aircraft: a novel hybrid synthetic jet actuator[J]. Sensors and Actuators A: Physical, 2020, 302: 111770. [30] 周岩, 夏智勋, 罗振兵, 等. 腔体增压等离子体合成射流激励器工作特性[J]. 国防科技大学学报, 2019, 41(6): 12-18. ZHOU Y, XIA Z X, LUO Z B, et al. Characterization of plasma synthetic jet actuator with cavity pressurization[J]. Journal of National University of Defense Technology, 2019, 41(6): 12-18 (in Chinese). [31] 刘汝兵, 王萌萌, 郝明, 等. 补气式等离子体射流发生器实验研究[J]. 航空学报, 2016, 37(6): 1713-1721. LIU R B, WANG M M, HAO M, et al. Experimental research on air supplementing type plasma synthetic jet generator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1713-1721 (in Chinese). [32] 刘汝兵, 李飞, 韦文韬, 等. 一种单向阀和等离子体合成射流激励器: CN112013138B[P]. 2021-07-13. LIU R B, LI F, WEI W T, et al. One-way valve and plasma synthetic jet actuator: CN112013138B[P]. 2021-07-13 (in Chinese). [33] DE LUCA L, GIRFOGLIO M, COPPOLA G. Modeling and experimental validation of the frequency response of synthetic jet actuators[J]. AIAA Journal, 2014, 52(8): 1733-1748. [34] 王林, 罗振兵, 夏智勋, 等. 等离子体合成射流能量效率及工作特性研究[J]. 物理学报, 2013, 62(12): 125207. WANG L, LUO Z B, XIA Z X, et al. Energy efficiency and performance characteristics of plasma synthetic jet[J]. Acta Physica Sinica, 2013, 62(12): 125207 (in Chinese). [35] 刘庆明, 汪建平, 李磊, 等. 电火花放电能量及其损耗的计算[J]. 高电压技术, 2014, 40(4): 1255-1260. LIU Q M, WANG J P, LI L, et al. Calculation of electric spark discharge energy and its energy loss[J]. High Voltage Engineering, 2014, 40(4): 1255-1260 (in Chinese). [36] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996: 105-107. XU X J, ZU D C. Gas discharge physics[M]. Shanghai: Fudan University Press, 1996: 105-107. [37] ZONG H H, KOTSONIS M. Effect of velocity ratio on the interaction between plasma synthetic jets and turbulent cross-flow[J]. Journal of Fluid Mechanics, 2019, 865: 928-962. |