ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (9): 25882.doi: 10.7527/S1000-6893.2021.25882
• Reviews • Previous Articles Next Articles
ZHAO Liangyu1, LI Dan1, ZHAO Chenyue1, JIANG Fei2
Received:
2021-05-31
Revised:
2021-06-21
Online:
2022-09-15
Published:
2021-07-09
Supported by:
CLC Number:
ZHAO Liangyu, LI Dan, ZHAO Chenyue, JIANG Fei. Some achievements on detection methods of UAV autonomous landing markers[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 25882.
[1] ZHAO L Y, ZHU Y Q, JIN R. Review of monocular V-SLAM for multi-rotor unmanned aerial vehicle[J]. Aero Weaponry, 2020, 27(2): 1-14 (in Chinese). 赵良玉, 朱叶青, 金瑞. 多旋翼无人机单目V-SLAM研究综述[J]. 航空兵器, 2020, 27(2): 1-14. [2] WU P F, SHI Z S, WU Z H, et al. Trajectory tracking and control for unmanned helicopter 's autonomous landing on ship[J]. Systems Engineering and Electronics, 2019, 41(11): 2573-2580 (in Chinese). 吴鹏飞, 石章松, 吴中红, 等. 无人直升机自主着舰轨迹跟踪控制[J]. 系统工程与电子技术, 2019, 41(11): 2573-2580. [3] ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 020435 (in Chinese). 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38(2): 020435. [4] WILLIAMS K W. A summary of unmanned aircraft accident/incident data: Human factors implications: ADA-460102[R]. Virginia: Defense Technical Information Center, 2004. [5] MANNING S D, RASH C E, LEDUC P A, et al. The role of human causal factors in U.S. army unmanned aerial vehicle accidents[R]. Defense Technical Information Center, 2004. [6] DE CROON G C H E, HO H W, DE WAGTER C, et al. Optic-flow based slope estimation for autonomous landing[J]. International Journal of Micro Air Vehicles, 2013, 5(4): 287-297. [7] XU X B, DUAN H B, ZENG Z G, et al. Progresses in UAV/USV cooperative control[J]. Aero Weaponry, 2020, 27(6): 1-6 (in Chinese). 徐小斌, 段海滨, 曾志刚, 等. 无人机/无人艇协同控制研究进展[J]. 航空兵器, 2020, 27(6): 1-6. [8] LIU Y P. Research of vision-based UAV target detection and tracking and its autoland technique[D]. Wuhan: Huazhong University of Science and Technology, 2019: 57-71 (in Chinese). 刘玉盼. 基于视觉的无人机目标检测跟踪与自主降落技术研究[D]. 武汉: 华中科技大学, 2019: 57-71. [9] SUO W K, HU W G, WU X S, et al. Research on autonomous landing of UAV based on optical vision[J]. Laser Journal, 2019, 40(4): 9-13 (in Chinese). 索文凯, 胡文刚, 伍锡山, 等. 基于光学视觉辅助无人机自主降落研究综述[J]. 激光杂志, 2019, 40(4): 9-13. [10] LI Q, ZHANG S L, MENG W G. Surveys of carrier landing techniques for UAVs[J]. Unmanned Systems Technology, 2018, 1(2): 43-48 (in Chinese). 李强, 张淑丽, 蒙文巩. 国外舰载无人机着舰引导技术发展现状[J]. 无人系统技术, 2018, 1(2): 43-48. [11] GAUTAM A, SUJIT P B, SARIPALLI S. A survey of autonomous landing techniques for UAVs[C]//2014 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2014: 1210-1218. [12] ZHAO Y Q, RAO Y, DONG S P, et al. Survey on deep learning object detection[J]. Journal of Image and Graphics, 2020, 25(4): 629-654 (in Chinese). 赵永强, 饶元, 董世鹏, 等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4): 629-654. [13] ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022, 126: 103514. [14] LI H G, YU R N, DING W R. Research development of small object traching based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 024691 (in Chinese). 李红光, 于若男, 丁文锐. 基于深度学习的小目标检测研究进展[J]. 航空学报, 2021, 42(7): 024691. [15] JIANG B, QU R K, LI Y D, et al. Object detection in UAV imagery based on deep learning: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524519 (in Chinese). 江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报, 2021, 42(4): 524519. [16] SRIVASTAVA S, NARAYAN S, MITTAL S. A survey of deep learning techniques for vehicle detection from UAV images[J]. Journal of Systems Architecture, 2021, 117: 102152. [17] LIU F, WU Z W, YANG A Z, et al. Multi-scale feature fusion based adaptive object detection for UAV[J]. Acta Optica Sinica, 2020, 40(10): 1015002 (in Chinese). 刘芳, 吴志威, 杨安喆, 等. 基于多尺度特征融合的自适应无人机目标检测[J]. 光学学报, 2020, 40(10): 1015002. [18] ZHAO L Y, CHENG Z K, GAO F J, et al. Several key technologies of unmanned aerial vehicle-unmanned surface vehicle cooperative autonomous landing[J]. Shipbuilding of China, 2020, 61(S1): 156-163 (in Chinese). 赵良玉, 程喆坤, 高凤杰, 等. 无人机/艇协同自主降落的若干关键技术[J]. 中国造船, 2020, 61(S1): 156-163. [19] JIN S G, ZHANG J Y, SHEN L C, et al. On-board vision autonomous landing techniques for quadrotor: A survey[C]//2016 35th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2016: 10284-10289. [20] KONG W W, ZHOU D L, ZHANG D B, et al. Vision-based autonomous landing system for unmanned aerial vehicle: A survey[C]//2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI). Piscataway: IEEE Press, 2014: 1-8. [21] CHEN Y, LIU H L. Overview of landmarks for autonomous, vision-based landing of unmanned helicopters[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(5): 14-27. [22] ZHEN Z Y. Research development in autonomous carrier-landing/ship-recovery guidance and control of unmanned aerial vehicles[J]. Acta Automatica Sinica, 2019, 45(4): 669-681 (in Chinese). 甄子洋. 舰载无人机自主着舰回收制导与控制研究进展[J]. 自动化学报, 2019, 45(4): 669-681. [23] SHEN L C, KONG W W, NIU Y F. Ground-and ship-based guidance approaches for autonomous landing of UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 187-196 (in Chinese). 沈林成, 孔维玮, 牛轶峰. 无人机自主降落地基/舰基引导方法综述[J]. 北京航空航天大学学报, 2021, 47(2): 187-196. [24] WEI X H. Research on visual detection of landing area and autonomous landing guidance of UAV[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 13-19 (in Chinese). 魏祥灰. 着陆区域视觉检测及无人机自主着陆导引研究[D]. 南京: 南京航空航天大学, 2019: 13-19. [25] ZHANG S Y. Research on deep learning algorithm of object detection for intelligent robot[D]. Harbin: Harbin Engineering University, 2018: 1-2 (in Chinese). 张思雨. 智能机器人目标检测的深度学习算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018: 1-2. [26] MINAEE S, BOYKOV Y, PORIKLI F, et al. Image segmentation using deep learning: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3523-3542. [27] WANG Y. Vision-based UAV target recognition and tracking[D]. Harbin: Harbin Institute of Technology, 2019: 2-3 (in Chinese). 王瑶. 基于视觉的无人机目标识别及跟踪[D]. 哈尔滨: 哈尔滨工业大学, 2019: 2-3. [28] JIN R. Research on object detection technology in autonomous recovery of UAV[D]. Beijing: Beijing Institute of Technology, 2020: 4-9 (in Chinese). 金忍. 无人机自主回收中的视觉检测技术研究[D]. 北京: 北京理工大学, 2020: 4-9. [29] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [30] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [31] UIJLINGS J R R, SANDE K, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171. [32] ZITNICK C L, DOLLáR P. Edge boxes: Locating object proposals from edges[C]//ECCV 2014. Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2014: 391-405. [33] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587. [34] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448. [35] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [36] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788. [37] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6517-6525. [38] REDMON J, FARHADI A. YOLOv3: An incremental improvement[DB/OL]. arXiv preprint: 1804.02767, 2018. [39] BOCHKOVSKIY A, WANG C-Y, LIAO H-Y M. Yolov4: Optimal speed and accuracy of object detection[DB/OL]. arXiv preprint: 2004.10934, 2020. [40] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//ECCV 2016. Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 21-37. [41] FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[DB/OL]. arXiv preprint: 1701.06659, 2017 [42] ZHANG Z S, QIAO S Y, XIE C H, et al. Single-shot object detection with enriched semantics[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 5813-5821. [43] NGUYEN P H, ARSALAN M, KOO J H, et al. LightDenseYOLO: A fast and accurate marker tracker for autonomous UAV landing by visible light camera sensor on drone[J]. Sensors (Basel, Switzerland), 2018, 18(6): 1703. [44] LI J H, WANG X H, CUI H R, et al. Research on detection technology of autonomous landing based on airborne vision[J]. IOP Conference Series: Earth and Environmental Science, 2020, 440(4): 042093. [45] TRUONG N Q, LEE Y W, OWAIS M, et al. SlimDeblurGAN-based motion deblurring and marker detection for autonomous drone landing[J]. Sensors (Basel, Switzerland), 2020, 20(14): 3918. [46] TAN M X, PANG R M, LE Q V. EfficientDet: Scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 10778-10787. [47] CHOI J, CHUN D, KIM H, et al. Gaussian YOLOv3: An accurate and fast object detector using localization uncertainty for autonomous driving[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 502-511. [48] ZHANG P Y, ZHONG Y X, LI X Q. SlimYOLOv3: Narrower, faster and better for real-time UAV applications[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway: IEEE Press, 2019: 37-45. [49] ZHAO H P, ZHOU Y, ZHANG L, et al. Mixed YOLOv3-LITE: A lightweight real-time object detection method[J]. Sensors (Basel, Switzerland), 2020, 20(7): 1861. [50] SHAKERNIA O, MA Y, KOO T J, et al. Vision guided landing of an unmanned air vehicle[C]//Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No. 99CH36304). Piscataway: IEEE Press, 1999: 4143-4148. [51] SHARP C S, SHAKERNIA O, SASTRY S S. A vision system for landing an unmanned aerial vehicle[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164). Piscataway: IEEE Press, 2001: 1720-1727. [52] SARIPALLI S, MONTGOMERY J F, SUKHATME G S. Vision-based autonomous landing of an unmanned aerial vehicle[C]//Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292). Piscataway: IEEE Press, 2002: 2799-2804. [53] SARIPALLI S, MONTGOMERY J F, SUKHATME G S. Visually guided landing of an unmanned aerial vehicle[J]. IEEE Transactions on Robotics and Automation, 2003, 19(3): 371-380. [54] ZENG F C, SHI H Q, WANG H. The object recognition and adaptive threshold selection in the vision system for landing an Unmanned Aerial Vehicle[C]//2009 International Conference on Information and Automation. Piscataway: IEEE Press, 2009: 117-122. [55] LANGE S, SUNDERHAUF N, PROTZEL P. A vision based onboard approach for landing and position control of an autonomous multirotor UAV in GPS-denied environments[C]//2009 International Conference on Advanced Robotics. Piscataway: IEEE Press, 2009: 1-6. [56] YUAN H W, XIAO C S, XIU S P, et al. A hierarchical vision-based UAV localization for an open landing[J]. Electronics, 2018, 7(5): 68. [57] WUBBEN J, FABRA F, CALAFATE C T, et al. Accurate landing of unmanned aerial vehicles using ground pattern recognition[J]. Electronics, 2019, 8(12): 1532. [58] JUNG Y, LEE D J, BANG H. Close-range vision navigation and guidance for rotary UAV autonomous landing[C]//2015 IEEE International Conference on Automation Science and Engineering. Piscataway: IEEE Press, 2015: 342-347. [59] ZHANG M, ZHAO Y, BU S H, et al. Multi-level marker based autonomous landing system for UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 322150 (in Chinese). 张咪, 赵勇, 布树辉, 等. 基于阶层标识的无人机自主精准降落系统[J]. 航空学报, 2018, 39(10): 322150. [60] GARCÍA-PULIDO J A, PAJARES G, DORMIDO S, et al. Recognition of a landing platform for unmanned aerial vehicles by using computer vision-based techniques[J]. Expert Systems With Applications, 2017, 76: 152-165. [61] MEI L C, WANG C Y, ZHAO Y F, et al. Real-time detection method of landmark in UAV autonomous landing[J]. Systems Engineering and Electronics, 2019, 41(10): 2157-2162 (in Chinese). 梅立春, 王彩云, 赵元富, 等. 无人机自主着陆地标实时检测方法[J]. 系统工程与电子技术, 2019, 41(10): 2157-2162. [62] NGUYEN P H, KIM K W, LEE Y W, et al. Remote marker-based tracking for UAV landing using visible-light camera sensor[J]. Sensors (Basel, Switzerland), 2017, 17(9): 1987. [63] TRUONG N Q, NGUYEN P H, NAM S H, et al. Deep learning-based super-resolution reconstruction and marker detection for drone landing[J]. IEEE Access, 2019, 7: 61639-61655. [64] CHEN J J, MIAO X R, JIANG H, et al. Identification of autonomous landing sign for unmanned aerial vehicle based on faster regions with convolutional neural network[C]//2017 Chinese Automation Congress (CAC). Piscataway: IEEE Press, 2017: 2109-2114. [65] YU L J, LUO C, YU X R, et al. Deep learning for vision-based micro aerial vehicle autonomous landing[J]. International Journal of Micro Air Vehicles, 2018, 10(2): 171-185. [66] SARIPALLI S, SUKHATME G S. Landing on a moving target using an autonomous helicopter[C]//Proceedings of the Field and service robotics. Berlin: Springer, 2003: 277-286. [67] CHENG H, CHEN Y S, LI X K, et al. Autonomous takeoff, tracking and landing of a UAV on a moving UGV using onboard monocular vision[C]//Proceedings of the 32nd Chinese Control Conference. Piscataway: IEEE Press, 2013: 5895-5901. [68] CHEN X D, PHANG S K, SHAN M, et al. System integration of a vision-guided UAV for autonomous landing on moving platform[C]//2016 12th IEEE International Conference on Control and Automation. Piscataway: IEEE Press, 2016: 761-766. [69] BACA T, STEPAN P, SPURNY V, et al. Autonomous landing on a moving vehicle with an unmanned aerial vehicle[J]. Journal of Field Robotics, 2019, 36(5): 874-891. [70] LEE H, JUNG S, SHIM D H. Vision-based UAV landing on the moving vehicle[C]//2016 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2016: 1-7. [71] BENINI A, RUTHERFORD M J, VALAVANIS K P. Real-time, GPU-based pose estimation of a UAV for autonomous takeoff and landing[C]//2016 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2016: 3463-3470. [72] ARAAR O, AOUF N, VITANOV I. Vision based autonomous landing of multirotor UAV on moving platform[J]. Journal of Intelligent & Robotic Systems, 2017, 85(2): 369-384. [73] XING B Y, PAN F, WANG W, et al. Moving platform self-optimization landing technology for quadrotor based on hybrid landmark[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 322601 (in Chinese). 邢伯阳, 潘峰, 王位, 等. 基于复合地标导航的动平台四旋翼飞行器自主优化降落技术[J]. 航空学报, 2019, 40(6): 322601. [74] YANG T, REN Q, ZHANG F B, et al. Hybrid camera array-based UAV auto-landing on moving UGV in GPS-denied environment[J]. Remote Sensing, 2018, 10(11): 1829. [75] QIU L W, SONG Z S, SHEN W Q. Computer vision scheme used for the automate landing of unmanned helicopter on ship deck[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(4): 351-354 (in Chinese). 邱力为, 宋子善, 沈为群. 用于无人直升机着舰控制的计算机视觉技术研究[J]. 航空学报, 2003, 24(4): 351-354. [76] BAGEN W L, HU J Z, XU Y M. A vision-based unmanned helicopter ship board landing system[C]//2009 2nd International Congress on Image and Signal Processing. Piscataway: IEEE Press, 2009: 1-5. [77] XU G L, ZHANG Y, JI S Y, et al. Research on computer vision-based for UAV autonomous landing on a ship[J]. Pattern Recognition Letters, 2009, 30(6): 600-605. [78] XIA Z H, XU G L, CHENG Y H, et al. The study of IR segmentation of cooperative target in vision-based UAV landing on ship[J]. Aero Weaponry, 2009, 16(6): 28-30, 53 (in Chinese). 夏正浩, 徐贵力, 程月华, 等. 基于视觉的无人机着舰中红外合作目标的分割方法研究[J]. 航空兵器, 2009, 16(6): 28-30, 53. [79] SANCHEZ-LOPEZ J L, PESTANA J, SARIPALLI S, et al. An approach toward visual autonomous ship board landing of a VTOL UAV[J]. Journal of Intelligent & Robotic Systems, 2014, 74(1-2): 113-127. [80] POLVARA R, SHARMA S, WAN J, et al. Towards autonomous landing on a moving vessel through fiducial markers[C]//2017 European Conference on Mobile Robots (ECMR). Piscataway: IEEE Press, 2017: 1-6. [81] POLVARA R, SHARMA S, WAN J, et al. Vision-based autonomous landing of a quadrotor on the perturbed deck of an unmanned surface vehicle[J]. Drones, 2018, 2(2): 15. [82] TSAI A C, GIBBENS P W, STONE R H. Terminal phase vision-based target recognition and 3D pose estimation for a tail-sitter, vertical takeoff and landing unmanned air vehicle[C]//Advances in Image and Video Technology, Berlin: Springer, 2006: 672-681. [83] YANG F, SHI H Q, WANG H. A vision-based algorithm for landing unmanned aerial vehicles[C]//2008 International Conference on Computer Science and Software Engineering. Piscataway: IEEE Press, 2008: 993-996. [84] LI Y, WANG Y R, LUO H, et al. Landmark recognition for UAV autonomous landing based on vision[J]. Application Research of Computers, 2012, 29(7): 2780-2783 (in Chinese). 李宇, 王友仁, 罗慧, 等. 基于视觉的无人机自主着陆地标识别方法[J]. 计算机应用研究, 2012, 29(7): 2780-2783. [85] VERBANDT M, THEYS B, DE SCHUTTER J. Robust marker-tracking system for vision-based autonomous landing of VTOL UAVs[C]//Proceedings of the International Micro Air Vehicle Conference and Competition 2014. Delft: Delft University of Technology, 2014: 84-91. [86] XU C, QIU L K, LIU M, et al. Stereo vision based relative pose and motion estimation for unmanned helicopter landing[C]//2006 IEEE International Conference on Information Acquisition. Piscataway: IEEE Press, 2006: 31-36. |
[1] | Haifeng WANG, Kunpeng LIU, Hongxin JIANG, Chenxi DU. Aerodynamic optimization method of propeller multi⁃design points and variable pitch angle strategy [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528831-528831. |
[2] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[3] | Jing ZHAO, Dan SONG. Integrity monitoring method for GNSS/IMU integrated navigation system of UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 328943-328943. |
[4] | Chuanyun WANG, Yang SU, Linlin WANG, Tian WANG, Jingjing WANG, Qian GAO. Multi-object continuous robust tracking algorithm for anti-UAV swarm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 329017-329017. |
[5] | Hongyu YIN, Yu WU, Tianjiao LIANG. Cooperative path planning for patrol coverage of fixed wing UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 328944-328944. |
[6] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[7] | Chuihuan KONG, Dawei WU, Zhaoguang TAN, Lijun PAN, Rubing MA, Jiangtao SI. Design of fully electric scheme for three⁃surface verification aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629618-629618. |
[8] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
[9] | Yunpeng CAI, Dapeng ZHOU, Jiangchuan DING. Intelligent collaborative control of UAV swarms with collision avoidance safety constraints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529683-529683. |
[10] | Gaojie ZHENG, Xiaoming HE, Dongpo LI, Huijun TAN, Kun WANG, Zhenlong WU, Depeng WANG. Double 90° deflection inlet/volute coupling flow characteristics of tail-powered unmanned aerial vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128782-128782. |
[11] | Zhu WANG, Mengtong ZHANG, Zhenpeng ZHANG, Guangtong XU. Multi-UAV cooperative path planning based on multi-index dynamic priority [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328816-328816. |
[12] | Haiqiao LIU, Meng LIU, Zichao GONG, Jing DONG. A review of image matching methods based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28796-028796. |
[13] | Yuan YAO, Yuke DAI, Yiming XU. Overall parameter design of solar UAV considering uncertainty [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 529856-529856. |
[14] | Haifeng WANG. Development of high performance collaborative combat UAVs [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530304-530304. |
[15] | Wenqing YANG, Yueyang GUO, Yuanbo DONG, Dong XUE, Jianlin XUAN. Research progress on fluid structure interaction of bionic flexible flapping wing UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530069-530069. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341