ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2021, Vol. 42 ›› Issue (9): 625767-625767.doi: 10.7527/S1000-6893.2021.25767
• Special Topic of NNW Progress and Application • Previous Articles Next Articles
WANG Ping, ZHENG Xiaojing
Received:
2021-03-30
Revised:
2021-05-10
Published:
2021-05-24
Supported by:
CLC Number:
WANG Ping, ZHENG Xiaojing. Advances in numerical simulation of wind-blown sand[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 625767-625767.
[1] ZHENG X J. Mechanics of wind-blown sand movement[M]. Berlin/Heidelberg:Springer, 2009. [2] BAGNOLD R A. The physics of blown sand and desert dunes[M]. Dordrecht:Springer Netherlands, 1974. [3] DUFFA G. Ablative thermal protection systems modeling[M].Reston:AIAA, 2013. [4] COLGLAZIER W. Sustainable development agenda:2030[J]. Science, 2015, 349(6252):1048-1050. [5] 全国重要生态系统保护和修复重大工程总体规划(2021-2035年)[EB/OL]. (2020-06-12)[2021-04-02]. http://www.mnr.gov.cn/dt/ywbb/202006/t20200612_25258-56.html. Master plan for major projects of national important ecosystem protection and restoration (2021-2035)[EB/OL]. (2020-06-12)[2021-04-02]. http://www.mnr.gov.cn/dt/ywbb/202006/t20200612_2525856.html (in Chinese). [6] ZHENG X J. Electrification of wind-blown sand:Recent advances and key issues[J]. The European Physical Journal E, 2013, 36(12):138. [7] BALACHANDAR S, EATON J K. Turbulent dispersed multiphase flow[J]. Annual Review of Fluid Mechanics, 2010, 42(1):111-133. [8] KENNEDY D. What don't we know?[J]. Science, 2005, 309(5731):75. [9] OWEN P R. Saltation of uniform grains in air[J]. Journal of Fluid Mechanics, 1964, 20(2):225-242. [10] WHITE B R, GREELEY R, IVERSEN J D, et al. Estimated grain saltation in a Martian atmosphere[J]. Journal of Geophysical Research:Atmospheres, 1976, 81(32):5643-5650. [11] WHITE B R. Soil transport by winds on Mars[J]. Journal of Geophysical Research:Atmospheres, 1979, 84(B9):4643-4651. [12] ANDERSON R S, HALLET B. Sediment transport by wind:Toward a general model[J]. Geological Society of America Bulletin, 1986, 97(5):523-535. [13] 刘大有, 董飞. 风沙二相流动的三流体模型[J]. 应用数学和力学, 1996, 17(7):613-624. LIU D Y, DONG F. Athree-fluid model of the sand-driven flow[J]. Applied Mathematics and Mechanics, 1996, 17(7):613-624(in Chinese). [14] UNGAR J E, HAFF P K. Steady state saltation in air[J]. Sedimentology, 1987, 34(2):289-299. [15] WERNER B T. A steady-state model of wind-blown sand transport[J]. The Journal of Geology, 1990, 98(1):1-17. [16] ANDERSON R S, HAFF P K. Simulation of eolian saltation[J]. Science, 1988, 241(4867):820-823. [17] BAUER B O, DAVIDSON-ARNOTT R G D, ORDSTROM N K F, et al. Indeterminacy in Aeolian sediment transport across beaches[J]. Journal of Coastal Research, 1996, 12(3):641-653. [18] BAAS A C W, SHERMAN D J. Spatiotemporal variability of aeolian sand transport in a coastal dune environment[J]. Journal of Coastal Research, 2006, 225:1198-1205. [19] ELLIS J T, SHERMAN D J, FARRELL E J, et al. Temporal and spatial variability of aeolian sand transport:Implications for field measurements[J]. Aeolian Research, 2012, 3(4):379-387. [20] SHERMAN D J, HOUSER C, ELLIS J T, et al. Characterization of aeolian streamers using time-average videography[J]. Journal of Coastal Research, 2013, 65(sp2):1331-1336. [21] KLINE S J, REYNOLDS W C, SCHRAUB F A, et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics, 1967, 30(4):741-773. [22] ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23(1):601-639. [23] 杨强, 袁先旭, 陈坚强, 等. 不可压壁湍流中基本相干结构[J]. 空气动力学学报, 2020, 38(1):83-99. YANG Q, YUAN X X, CHEN J Q, et al. On elementary coherent structures in incompressible wall-bounded turbulence[J]. Acta Aerodynamica Sinica, 2020, 38(1):83-99(in Chinese). [24] KIM K C, ADRIAN R J. Very large-scale motion in the outer layer[J]. Physics of Fluids, 1999, 11(2):417-422. [25] HUTCHINS N, MARUSIC I. Evidence of very long meandering features in the logarithmic region ofturbulent boundary layers[J]. Journal of Fluid Mechanics, 2007, 579:1-28. [26] WANG G H, ZHENG X J. Verylarge scale motions in the atmospheric surface layer:A field investigation[J]. Journal of Fluid Mechanics, 2016, 802:464-489. [27] ZHENG X J, ZHANG J H, WANG G H, et al. Investigation on very large scale motions (VLSMs) and their influence in a dust storm[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(2):306-314. [28] WANG G H, ZHENG X J, TAO J J. Very large scale motions and PM10 concentration in a high-Re boundary layer[J]. Physics of Fluids, 2017, 29(6):061701. [29] BAAS A C W. Formation and behavior of aeolian streamers[J]. Journal of Geophysical Research:Atmospheres, 2005, 110(F3):F03011. [30] JACKSON D W T, MCCLOSKEY J. Preliminary results from a field investigation of aeolian sand transport using high resolution wind and transport measurements[J]. Geophysical Research Letters, 1997, 24(2):163-166. [31] RASMUSSEN K R, SØRENSEN M. Aeolian mass transport near the saltation threshold[J]. Earth Surface Processes and Landforms, 1999, 24(5):413-422. [32] CARNEIRO M V, RASMUSSEN K R, HERRMANN H J. Bursts in discontinuous Aeolian saltation[J]. Scientific Reports, 2015, 5:11109. [33] DIPLAS P, DANCEY C L, CELIK A O, et al. The role of impulse on the initiation of particle movement under turbulent flow conditions[J]. Science, 2008, 322(5902):717-720. [34] VALYRAKIS M, DIPLAS P, DANCEY C L, et al. Role of instantaneous force magnitude and duration on particle entrainment[J]. Journal of Geophysical Research:Earth Surface, 2010, 115(F2):F02006. [35] ZHENG X J, HE L H, WU J J. Vertical profiles of mass flux for windblown sand movement at steady state[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B1):B01106. [36] ANDERSON R S, HAFF P K. Wind modification and bed response during saltation of sand in air[M]//Aeolian Grain Transport 1. Vienna:Springer, 1991:21-51. [37] MCEWAN I K, WILLETTS B B. Numerical model of the saltation cloud[M]//Aeolian Grain Transport 1. Vienna:Springer, 1991:53-66. [38] MCEWAN I K, WILLETTS B B. Adaptation of the near-surface wind to the development of sand transport[J]. Journal of Fluid Mechanics, 1993, 252:99-115. [39] WILLETTS B B, RICE M A. Collisions in aeolian saltation[J]. Acta Mechanica, 1986, 63(1-4):255-265. [40] WILLETTS B B, RICE M A. Collisions of quartz grains with a sand bed:The influence of incident angle[J]. Earth Surface Processes and Landforms, 1989, 14(8):719-730. [41] SHAO Y P, LI A. Numerical modelling of saltation in the atmospheric surface layer[J]. Boundary-Layer Meteorology, 1999, 91(2):199-225. [42] SHAO Y, RAUPACH M R. The overshoot and equilibration of saltation[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D18):20559-20564. [43] ALMEIDA M P, ANDRADE J S, HERRMANN H J. Aeolian transport layer[J]. Physical Review Letters, 2006, 96(1):018001. [44] ALMEIDA M P, PARTELI E J R, ANDRADE J S, et al. Giant saltation on Mars[J].Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(17):6222-6226. [45] HUANG H J, BO T L, ZHENG X J. Numerical modeling of wind-blown sand on Mars[J]. The European Physical Journal E, 2014, 37(9):36. [46] ZHENG X J, FU L T, BO T L. Incident velocity and incident angle of saltating sand grains on Mars[J]. New Journal of Physics, 2013, 15(4):043014. [47] SCHMIDT D S, SCHMIDT R A, DENT J D. Electrostatic force on saltating sand[J]. Journal of Geophysical Research:Atmospheres, 1998, 103(D8):8997-9001. [48] ZHENG X J, HUANG N, ZHOU Y H. Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D10):4322. [49] BO T L, ZHENG X J. A field observational study of electrification within a dust storm inMinqin, China[J]. Aeolian Research, 2013, 8:39-47. [50] ZHENG X J, HUANG N, ZHOU Y. The effect of electrostatic force on the evolution of sand saltation cloud[J]. The European Physical Journal E, 2006, 19(2):129-138. [51] KOK J F, RENNO N O. Electrostatics in wind-blown sand[J]. Physical Review Letters, 2008, 100:014501. [52] HU W W, XIE L, ZHENG X J. Simulation of the electrification of wind-blown sand[J]. The European Physical Journal E, 2012, 35(3):1-8. [53] CARNEIRO M V, PÄHTZ T, HERRMANN H J. Jump at the onset of saltation[J]. Physical Review Letters, 2011, 107(9):098001. [54] DURÁN O, ANDREOTTI B, CLAUDIN P. Numerical simulation of turbulent sediment transport, from bed load to saltation[J]. Physics of Fluids, 2012, 24(10):103306. [55] PÄHTZ T, DURÁN O. Fluid forces or impacts:What governs the entrainment of soil particles in sediment transport mediated by a Newtonian fluid?[J]. Physical Review Fluids, 2017, 2(7):074303. [56] PÄHTZ T, DURÁN O. The cessation threshold ofnonsuspended sediment transport across aeolian and fluvial environments[J]. Journal of Geophysical Research:Earth Surface, 2018, 123(8):1638-1666. [57] SPIES P J, MCEWAN I K, BUTTERFIELD G R. One-dimensional transitionalbehaviour in saltation[J]. Earth Surface Processes and Landforms, 2000, 25(5):505-518. [58] WANG P, ZHENG X J. Saltation transport rate in unsteady wind variations[J]. The European Physical Journal E, 2014, 37(5):40. [59] ZHANG H, ZHENG X J, BO T L. Electric fields in unsteady wind-blown sand[J]. The European Physical Journal E, 2014, 37(2):13. [60] VAN DOP H, NIEUWSTADT F T M, HUNT J C R. Random walk models for particle displacements in inhomogeneous unsteady turbulent flows[J]. Physics of Fluids, 1985, 28(6):1639-1653. [61] SAWFORD B L, GUEST F M.Lagrangian statistical simulation of the turbulent motion of heavy particles[J]. Boundary-Layer Meteorology, 1991, 54(1-2):147-166. [62] WILSON J D, SAWFORD B L. Review ofLagrangian stochastic models for trajectories in the turbulent atmosphere[J]. Boundary-Layer Meteorology, 1996, 78(1-2):191-210. [63] EDSON J B, FAIRALL C W. Spray droplet modeling:1.Lagrangian model simulation of the turbulent transport of evaporating droplets[J]. Journal of Geophysical Research:Atmospheres, 1994, 99(C12):252955-25311. [64] ANDERSON R S. Eolian sediment transport as a stochastic process:The effects of a fluctuating wind on particle trajectories[J]. The Journal of Geology, 1987, 95(4):497-512. [65] SHAO Y P.A Lagrangian stochastic model for nonpassive particle diffusion in turbulent flows[J]. Mathematical and Computer Modelling, 1995, 21(9):31-37. [66] 郑晓静, 王萍. 风沙流中沙粒随机运动的数值模拟研究[J]. 中国沙漠, 2006, 26(2):184-188. ZHENG X J, WANG P.Numerical simulation on stochastic movement of sands in wind-blown sand[J]. Journal of Desert Research, 2006, 26(2):184-188(in Chinese). [67] WANG P, ZHENG X J, HU W W. Saltation and suspension of wind-blown particle movement[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2008, 51(10):1586-1596. [68] KOK J F, RENNO N O. A comprehensive numerical model of steady state saltation (COMSALT)[J]. Journal of Geophysical Research:Atmospheres, 2009, 114(D17):D17204. [69] CHENG X L, WU L, HU F, et al. Parameterizations of some important characteristics of turbulent fluctuations and gusty wind disturbances in the atmospheric boundary layer[J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D8):D08113. [70] CHENG X L, ZENG Q C, HU F. Stochastic modeling the effect of wind gust on dust entrainment during sand storm[J]. Chinese Science Bulletin, 2012, 57(27):3595-3602. [71] TANAKA T Y, CHIBA M. A numerical study of the contributions of dust source regions to the global dust budget[J]. Global and Planetary Change, 2006, 52(1-4):88-104. [72] ZENDER C S. Mineral Dust Entrainment and Deposition (DEAD) model:Description and 1990 s dust climatology[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D14):4416. [73] SHAO Y P, YANG Y, WANG J J, et al. Northeast Asian dust storms:Real-time numerical prediction and validation[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D22):4691. [74] SHAO Y P, LESLIE L M. Wind erosion prediction over the Australian continent[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D25):30091-30105. [75] MARTICORENA B, BERGAMETTI G, AUMONT B, et al. Modeling the atmospheric dust cycle:2.Simulation of Saharan dust sources[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D4):4387-4404. [76] SHAO Y P. Physics and modelling of wind erosion[M]. Dordrecht:Springer Netherlands,2009. [77] ZHENG X J, BO T L, XIE L. DPTM simulation of aeolian sand ripple[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2008, 51(3):328-336. [78] ZHENG X J, BO T L, ZHU W. A scale-coupled method for simulation of the formation and evolution of aeolian dune field[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(3):387-396. [79] ANDREOTTI B, CLAUDIN P, DOUADY S. Selection of dune shapes and velocities Part 1:Dynamics of sand, wind and barchans[J]. The European Physical Journal B-Condensed Matter, 2002, 28(3):321-339. [80] ELBELRHITI H, CLAUDIN P, ANDREOTTI B. Field evidence for surface-wave-induced instability of sand dunes[J]. Nature, 2005, 437(7059):720-723. [81] WASSON R J, HYDE R. Factors determining desert dune type[J]. Nature, 1983, 304(5924):337-339. [82] SQUIRES K D, EATON J K. Particle response and turbulence modification in isotropic turbulence[J]. Physics of Fluids A:Fluid Dynamics, 1990, 2(7):1191-1203. [83] 范全林, 张会强, 郭印诚, 等. 自由剪切湍流中颗粒-拟序结构相互作用研究进展[J]. 力学进展, 2001, 31(4):611-620. FAN Q L, ZHANG H Q, GUO Y C, et al. Particle-vortex interactions in turbulent shear flows[J]. Advances in Mechanics, 2001,31(4):611-620(in Chinese). [84] PAN Y, BANERJEE S. Numerical simulation of particle interactions with wall turbulence[J]. Physics of Fluids, 1996, 8(10):2733-2755. [85] VREMAN A W. Turbulence characteristics of particle-laden pipe flow[J]. Journal of Fluid Mechanics, 2007, 584:235-279. [86] SARDINA G, PICANO F, SCHLATTER P, et al.Large scale accumulation patterns of inertial particles in wall-bounded turbulent flow[J]. Flow, Turbulence and Combustion, 2011, 86(3-4):519-532. [87] DRITSELIS C D, VLACHOS N S. Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow[J]. Physics of Fluids, 2011, 23(2):025103. [88] ZHAO L H, ANDERSSON H I, GILLISSEN J J J. Turbulence modulation and drag reduction by spherical particles[J]. Physics of Fluids, 2010, 22(8):081702. [89] ZHAO L H, ANDERSSON H I, GILLISSEN J J J. Interphasial energy transfer and particle dissipation in particle-laden wall turbulence[J]. Journal of Fluid Mechanics, 2013, 715:32-59. [90] BERNARDINI M. Reynolds number scaling of inertial particle statistics in turbulent channel flows[J]. Journal of Fluid Mechanics, 2014, 758:R1. [91] LI D, LUO K, FAN J R. Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer[J]. Journal of Fluid Mechanics, 2016, 802:359-394. [92] WANG G,RICHTER D H. Two mechanisms of modulation of very-large-scale motions by inertial particles in open channel flow[J]. Journal of Fluid Mechanics, 2019, 868:538-559. [93] LEE J, LEE C. The effect of wall-normal gravity on particle-laden near-wall turbulence[J]. Journal of Fluid Mechanics, 2019, 873:475-507. [94] ZHOU T, ZHAO L H, HUANG W X, et al. Non-monotonic effect of mass loading on turbulence modulations in particle-laden channel flow[J]. Physics of Fluids, 2020, 32(4):043304. [95] PAN QQ, XIANG H, WANG Z, et al. Kinetic energy balance in turbulent particle-laden channel flow[J]. Physics of Fluids, 2020, 32(7):073307. [96] PAN Y, BANERJEE S. Numerical investigation of the effects of large particles on wall-turbulence[J]. Physics of Fluids, 1997, 9(12):3786-3807. [97] SHAO X M, WU T H, YU Z S. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number[J]. Journal of FluidMechanics, 2012, 693:319-344. [98] LI R Y, HUANG W X, ZHAO L H, et al. Assessment of force models on finite-sized particles at finite Reynolds numbers[J]. Applied Mathematics and Mechanics, 2020, 41(6):953-966. [99] BREUGEM W P. A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows[J]. Journal of Computational Physics, 2012, 231(13):4469-4498. [100] JI C, MUNJIZA A, AVITAL E, et al. Direct numerical simulation of sediment entrainment in turbulent channel flow[J]. Physics of Fluids, 2013, 25(5):056601. [101] JI C N, MUNJIZA A, AVITAL E, et al. Saltation of particles in turbulent channel flow[J]. Physical Review E, 2014, 89(5):052202. [102] VOWINCKEL B, KEMPE T, FRÖHLICH J. Fluid-particle interaction in turbulent open channel flow with fully-resolved mobile beds[J]. Advances in Water Resources, 2014, 72:32-44. [103] KIDANEMARIAM A G, UHLMANN M. Direct numerical simulation of pattern formation in subaqueous sediment[J]. Journal of Fluid Mechanics, 2014, 750:R2. [104] KIDANEMARIAM A G, UHLMANN M. Formation of sediment patterns in channel flow:Minimal unstable systems and their temporal evolution[J]. Journal of Fluid Mechanics, 2017, 818:716-743. [105] ZHU Z P, ZHENG X J, SHEN L. Particle number decomposition DEM parallel algorithm for particle laden flows[C]//The 72nd Annual Meeting of the APS Division of Fluid Dynamics, 2019. [106] HUGHES G O. Inside the head and tail of a turbulent gravity current[J]. Journal of Fluid Mechanics, 2016, 790:1-4. [107] XIE C Y, TAO J J, ZHANG L S. Origin of lobe and cleft at the gravity current front[J]. Physical Review E, 2019, 100(3):031103. [108] LOZANO-DURÁN A, JIMÉNEZ J. Effect of the computational domain on direct simulations of turbulent channels up to Reτ=4200[J]. Physics of Fluids, 2014, 26(1):011702. [109] MOSER R D, KIM J, MANSOUR N N. Direct numerical simulation of turbulent channel flow up to Reτ=590[J]. Physics of Fluids, 1999, 11(4):943-945. [110] AHN J, LEE J H, LEE J, et al. Direct numerical simulation of a 30R long turbulent pipe flow at Reτ=3008[J]. Physics of Fluids, 2015, 27(6):065110. [111] YAMAMOTO Y, TSUJI Y. Numerical evidence of logarithmic regions in channel flow at Reτ=8000[J]. Physical Review Fluids, 2018, 3:012602. [112] JIE Y C, XU C X, DAWSON J R, et al. Influence of the quiescent core on tracer spheroidal particle dynamics in turbulent channel flow[J]. Journal of Turbulence, 2019, 20(7):424-438. [113] FOX R O. Large-eddy-simulation tools for multiphase flows[J]. Annual Review of Fluid Mechanics, 2012, 44(1):47-76. [114] BALACHANDAR S. A scaling analysis for point-particle approaches to turbulent multiphase flows[J]. International Journal of Multiphase Flow, 2009, 35(9):801-810. [115] MARCHIOLI C. Large-eddy simulation of turbulent dispersed flows:A review of modelling approaches[J]. Acta Mechanica, 2017, 228(3):741-771. [116] KUERTEN J G M. Point-particle DNS and LES of particle-laden turbulent flow-A state-of-the-art review[J]. Flow, Turbulence and Combustion, 2016, 97(3):689-713. [117] DRITSELIS C D, VLACHOS N S. Large eddy simulation of gas-particle turbulent channel flow with momentum exchange between the phases[J]. International Journal of Multiphase Flow, 2011, 37(7):706-721. [118] MALLOUPPAS G, VAN WACHEM B.Large eddy simulations of turbulent particle-laden channel flow[J]. International Journal of Multiphase Flow, 2013, 54:65-75. [119] YEH F, LEI U. On the motion of small particles in a homogeneous isotropic turbulent flow[J]. Physics of Fluids A:Fluid Dynamics, 1991, 3(11):2571-2586. [120] WANG Q, SQUIRES K D. Large eddy simulation of particle deposition in a vertical turbulent channel flow[J]. International Journal of Multiphase Flow, 1996, 22(4):667-683. [121] WANG B. Inter-phase interaction in a turbulent, verticalchannel flow laden with heavy particles. Part I:Numerical methods and particle dispersion properties[J]. International Journal of Heat and Mass Transfer, 2010, 53(11-12):2506-2521. [122] BREUER M, ALLETTO M. Efficient simulation of particle-laden turbulent flows with high mass loadings using LES[J]. International Journal of Heat and Fluid Flow, 2012, 35:2-12. [123] CAPECELATRO J, DESJARDINS O. Eulerian-Lagrangian modeling of turbulent liquid-solid slurries in horizontal pipes[J]. International Journal of Multiphase Flow, 2013, 55:64-79. [124] SCHMEECKLE M W. Numerical simulation of turbulence and sediment transport of medium sand[J]. Journal of Geophysical Research:Earth Surface, 2014, 119(6):1240-1262. [125] FINN J R, LI M, APTE S V. Particle based modelling and simulation of natural sand dynamics in the wave bottom boundary layer[J]. Journal of Fluid Mechanics, 2016, 796:340-385. [126] ELGHANNAY H, TAFTI D. LES-DEM simulations of sediment transport[J]. International Journal of Sediment Research, 2018, 33(2):137-148. [127] LIU D T, LIU X F, FU X D. LES-DEM simulations of sediment saltation in a rough-wall turbulent boundary layer[J]. Journal of Hydraulic Research, 2019, 57(6):786-797. [128] ZHENG X J, FENG S J, WANG P. Modulation of turbulence by saltating particles on erodible bed surface[J].Journal of Fluid Mechanics, 2021, 918:A16. [129] DUPONT S, BERGAMETTI G, MARTICORENA B, et al. Modeling saltation intermittency[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(13):7109-7128. [130] CEYSSELS M, DUPONT P, EL MOCTAR A O, et al. Saltating particles in a turbulent boundary layer:Experiment and theory[J]. Journal of Fluid Mechanics, 2009, 625:47-74. [131] PIOMELLI U. Wall-layer models for large-eddy simulations[J]. Progress in Aerospace Sciences, 2008, 44(6):437-446. [132] LARSSON J, KAWAI S, BODART J, et al.Large eddy simulation with modeled wall-stress:Recent progress and future directions[J]. Mechanical Engineering Reviews, 2016, 3(1):1-23. [133] DEARDORFF J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics, 1970, 41(2):453-480. [134] SCHUMANN U.Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J]. Journal of Computational Physics, 1975, 18(4):376-404. [135] MOENG C H. A large-eddy-simulation model for the study of planetary boundary-layer turbulence[J]. Journal of the Atmospheric Sciences, 1984, 41(13):2052-2062. [136] PIOMELLI U, FERZIGER J, MOIN P, et al. New approximate boundary conditions for large eddy simulations of wall-bounded flows[J]. Physics of Fluids A:Fluid Dynamics, 1989, 1(6):1061-1068. [137] MATHIS R, MARUSIC I, CHERNYSHENKO S I, et al. Estimating wall-shear-stress fluctuations given an outer region input[J]. Journal of Fluid Mechanics, 2013, 715:163-180. [138] YANG X, SADIQUE J, MITTAL R, et al. Integral wall model for large eddy simulations of wall-bounded turbulent flows[J]. Physics of Fluids, 2015, 27(2):025112. [139] ZHANG Y F, VICQUELIN R, GICQUEL O, et al. A wall model for LES accounting for radiation effects[J]. International Journal of Heat and Mass Transfer, 2013, 67:712-723. [140] VINKOVIC I, AGUIRRE C, AYRAULT M, et al. Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer[J]. Boundary-Layer Meteorology, 2006, 121(2):283-311. [141] LI Z Q, WANG Y, ZHANG Y. A numerical study of particle motion and two-phase interaction in aeolian sand transport using a coupled large eddy simulation-discrete element method[J]. Sedimentology, 2014, 61(2):319-332. [142] WERNER H, WENGLE H. Large-eddy simulation of turbulent flow over and around a cube in a platechannel[M]//Turbulent Shear Flows 8. Berlin/Heidelberg:Springer, 1993:155-168. [143] WANG P, FENG S J, ZHENG X J, et al. The scale characteristics and formation mechanism of aeolian sand streamers based on large eddy simulation[J]. Journal of Geophysical Research:Atmospheres, 2019, 124(21):11372-11388. [144] PORTÉ-AGEL F, MENEVEAU C, PARLANGE M B. A scale-dependent dynamic model for large-eddy simulation:Application to a neutral atmospheric boundary layer[J]. Journal of Fluid Mechanics, 2000, 415:261-284. [145] ZHENG X J, JIN T, WANG P. The influence of surface stress fluctuation on saltation sand transport around threshold[J]. Journal of Geophysical Research:Earth Surface, 2020, 125(5):e2019 JF005246. [146] SIDEBOTTOM W, CARBIT O, MARUSIC I, et al. Modelling of wall-shear stress fluctuations for large-eddy simulation[C]//Proceeding 19th Australasian Fluid Mechanics Conference, 2014. [147] GU Z L, ZHAO Y Z, LI Y, et al. Numerical simulation of dust lifting within dust Devils-Simulation of an intense vortex[J]. Journal of the Atmospheric Sciences, 2006, 63(10):2630-2641. [148] KLOSE M, SHAO Y P. Large-eddy simulation of turbulent dust emission[J]. Aeolian Research, 2013, 8:49-58. [149] ZHANG Y Y, HU R F, ZHENG X J. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer:A large-eddy simulation study[J]. Physics of Fluids, 2018, 30(4):046601. [150] PENG C, AYALA O M, WANG L P. A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow[J]. Journal of Fluid Mechanics, 2019, 875:1096-1144. [151] SHI X F, XI P, WU J J. A lattice Boltzmann-Saltation model and its simulation of aeolian saltation at porous fences[J]. Theoretical and Computational Fluid Dynamics, 2015, 29(1-2):1-20. [152] 逯博, 买买提明·艾尼, 金阿芳, 等. 基于SPH的风沙运动的数值模拟[J]. 力学学报, 2013, 45(2):177-182. LU B, GENI M, JIN A F, et al. Numerical simulation of wind-blown sand movement based on SPH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):177-182(in Chinese). [153] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J/OL]. 中国科学:技术科学,(2021-04-28)[2021-05-14]. https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese national numericalwindtunnel project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-05-14].https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.0914.006.html (in Chinese). |
[1] | Bo LI, Xiao WANG. Dynamic modeling and modal analysis of coaxial rotors/auxiliary propeller/drive train coupled system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528945-528945. |
[2] | Changhao LIU, Yihua CAO, Xiaomeng MEI, Maosheng WANG, Guanglin ZHANG. Transport effectiveness evaluation of high⁃speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 530182-530182. |
[3] | Yuqing QIU, Yan LI, Jinxi LANG, Yuxian LIU, Zhong WANG. Robust adaptive attitude control of high-speed helicopters in transition mode [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529927-529927. |
[4] | Yanyan LUO, Shuo YANG, Xiaosong PAN, Xuhuai ZHAO, Li ZHANG. Signal reflection suppression and optimized design of high⁃speed connectors for aerospace applications [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 328937-328937. |
[5] | Qingyu ZHU, Qingkai HAN, Weimin WANG, Zhinong JIANG. Vibration transfer path analysis of aeroengine multi-support accessory system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 628303-628303. |
[6] | Bo YANG, He YU, Zichen FAN. Micro-energy analysis method for time-varying error of aero-optical effects [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128703-128703. |
[7] | Shuai LI, Qihang LI, Can CHEN, Zhifa FANG, Weimin WANG. Modeling method and verification for rotor systems integrated with transfer functions of flexible foundation [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 229250-229250. |
[8] | Xueliang LI, Chuangchuang LI, Wei SU, Jie WU. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128627-128627. |
[9] | Hong WEI, Peng WANG, Wei DONG, Xiaofeng GUO, Zhida LI, Xuesen YANG, Zhongfu TANG, Chao FU. Effects of main flow velocity on frosting and defrosting characteristics of microtubule precooler [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128639-128639. |
[10] | Chuankai LIU, Zhaoxiang WANG, Junxiong LEI, Zuoyu ZHANG, Kuangang FAN, Jitao ZHANG, Xiaoxue WANG, Hailang PAN, Jianguo LIU. An epipolar relaxation constrained matching algorithm of large-affined images for lunar rover with large span distance in a single movement [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 328659-328659. |
[11] | Heyong SI, Yaoli WANG, Lihua CAO, Dongchao CHEN. Dynamic behavior of seal-rotor system in a supercritical carbon dioxide turbine during acceleration transition [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 228652-228652. |
[12] | Hai LI, Yongjun LI, Yuanhao LIU, Weihu ZHAO, Xin LI, Shanghong ZHAO. ESWO⁃based task⁃scheduling algorithm for agile earth observation satellites [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329370-329370. |
[13] | Chao DUAN, Xiaodong SHAO, Qinglei HU, Huaining WU. Attitude tracking of underactuated spacecraft based on transverse function [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628910-628910. |
[14] | Shu YANG. Helicopter integrated flight⁃engine control with envelope protections [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727560-727560. |
[15] | Yu ZENG, Hongbo WANG, Mingbo SUN, Chao WANG, Xu LIU. SST turbulence model improvements: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 27411-027411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341