[1] 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38(5):311-390. CHEN Y F, HONG C Q, HU C L, et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics, 2017, 38(5):311-390(in Chinese). [2] 何雅玲, 谢涛. 气凝胶纳米多孔材料传热计算模型研究进展[J]. 科学通报, 2015, 60(2):137-163. HE Y L, XIE T. A review of heat transfer models of nanoporous silica aerogel insulation material[J]. Chinese Science Bulletin, 2015, 60(2):137-163(in Chinese). [3] HE Y L, XIE T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material[J]. Applied Thermal Engineering, 2015, 81:28-50. [4] DU S, TONG Z X, ZHANG H H, et al. Tomography-based determination of Nusselt number correlation for the porous volumetric solar receiver with different geometrical parameters[J]. Renewable Energy, 2019, 135:711-718. [5] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J/OL]. 中国科学:技术科学,(2021-04-28)[2021-05-19]. https://kns.cnki.net/kcms/detail/11.5844.TH.20210-428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-05-19]. https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.0914.006.html (in Chinese). [6] QIN F, PENG L N, LI J, et al. Numerical simulations of multiscale ablation of carbon/carbon throat with morphology effects[J]. AIAA Journal, 2017, 55(10):3476-3485. [7] BENSOUSSAN A, LIONS J L, PAPANICOLAOU G. Asymptotic analysis for periodic structures[M]. Providence:American Mathematical Society, 2011. [8] E W N. Principles of multiscale modeling[M]. Cambridge:Cambridge University Press, 2011. [9] 曹礼群, 罗剑兰. 多孔复合介质周期结构热传导和质扩散问题的多尺度数值方法[J]. 工程热物理学报, 2000, 21(5):610-614. CAO L Q, LUO J L. Multiscale numerical methods for heat and mass transfer problems of composite porous media with a periodic structures[J]. Journal of Engineering Thermophysics, 2000, 21(5):610-614(in Chinese). [10] LIU S T, ZHANG Y C. Multi-scale analysis method for thermal conductivity of porous material with radiation[J]. Multidiscipline Modeling in Materials and Structures, 2006, 2(3):327-344. [11] ALLAIRE G, EL GANAOUI K. Homogenization of a conductive and radiative heat transfer problem[J]. Multiscale Modeling & Simulation, 2009, 7(3):1148-1170. [12] YANG Z Q, CUI J Z, NIE Y F, et al. The second-order two-scale method for heat transfer performances of periodic porous materials with interior surface radiation[J]. Computer Modeling in Engineering and Sciences, 2012, 88(5):419-442. [13] YANG Z Q, CUI J Z, SUN Y, et al. Multiscale computation for transient heat conduction problem with radiation boundary condition in porous materials[J]. Finite Elements in Analysis and Design, 2015, 102-103:7-18. [14] YANG Z Q, SUN Y, CUI J Z, et al. A three-scale homogenization algorithm for coupled conduction-radiation problems in porous materials with multiple configurations[J]. International Journal of Heat and Mass Transfer, 2018, 125:1196-1211. [15] HAYMES R, GAL E. Iterative multiscale approach for heat conduction with radiation problem in porous materials[J]. Journal of Heat Transfer, 2018, 140(8):082002. [16] YANG Z Q, CUI J Z, MA Q, et al. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials[J]. Discrete & Continuous Dynamical Systems-B, 2014, 19(3):827-848. [17] ALLAIRE G, HABIBI Z. Homogenization of a conductive, convective, and radiative heat transfer problem in a heterogeneous domain[J]. SIAM Journal on Mathematical Analysis, 2013, 45(3):1136-1178. [18] HUANG J Z, CAO L Q. Global regularity and multiscale approach for thermal radiation heat transfer[J]. Multiscale Modeling & Simulation, 2014, 12(2):694-724. [19] HUANG J Z, CAO L Q, YANG C. A multiscale algorithm for radiative heat transfer equation with rapidly oscillating coefficients[J]. Applied Mathematics and Computation, 2015, 266:149-168. [20] HOWELL J R, SIEGEL R, MENGUC M P. Thermal radiation heat transfer[M]. 5th ed, Boca Raton:CRC Press, 2010. [21] TONG Z X, LI M J, XIE T, et al. Lattice Boltzmann method for conduction and radiation heat transfer and its application in composite materials[J]. Journal of Thermal Science, 2021, Accepted. [22] MCHARDY C, HORNEBER T, RAUH C. New lattice Boltzmann method for the simulation of three-dimensional radiation transfer in turbid media[J]. Optics Express, 2016, 24(15):16999-17017. [23] 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社, 2009. HE Y L, WANG Y, LI Q. Lattice Boltzmann method:Theory and applications[M]. Beijing:Science Press, 2009(in Chinese). [24] ASINARI P, MISHRA S C, BORCHIELLINI R. A lattice Boltzmann formulation for the analysis of radiative heat transfer problems in a participating medium[J]. Numerical Heat Transfer, Part B:Fundamentals, 2010, 57(2):126-146. |