[1] 陈利, 赵世博, 王心淼. 三维纺织增强材料及其在航空航天领域的应用[J]. 纺织导报, 2018(增刊1):80-87. CHEN L, ZHAO S B, WANG X M. Development and application of 3D textile reinforcements in the aerospace field[J]. China Textile Leader, 2018(Sup. 1):80-87(in Chinese). [2] 关留祥, 李嘉禄, 焦亚男, 等. 航空发动机复合材料叶片用3D机织预制体研究进展[J]. 复合材料学报, 2018, 35(4):748-759. GUAN L X, LI J L, JIAO Y N, et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica, 2018, 35(4):748-759(in Chinese). [3] 陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72. CHEN L, JIAO W, WANG X M, et al. Research progress on mechanical properties of 3D woven composites[J]. Journal of Materials Engineering, 2020, 48(8):62-72(in Chinese). [4] 果立成, 廖锋, 李志兴, 等. 机织复合材料损伤演化研究进展[J]. 中国科学:技术科学, 2020, 50(7):876-896. GUO L C, LIAO F, LI Z X, et al. Research progress in damage evolution of woven composites[J]. Scientia Sinica (Technologica), 2020, 50(7):876-896(in Chinese). [5] 杨甜甜, 张典堂, 邱海鹏, 等. SiCf/SiC纺织复合材料细观结构及力学性能研究进展[J]. 航空材料学报, 2020, 40(5):1-12. YANG T T, ZHANG D T, QIU H P, et al. Research progress on meso-structure and mechanical properties of SiCf/SiC textile composites[J]. Journal of Aeronautical Materials, 2020, 40(5):1-12(in Chinese). [6] KAZEMIANFAR B, ESMAEELI M, NAMI M R. Response of 3D woven composites under low velocity impact with different impactor geometries[J]. Aerospace Science and Technology, 2020, 102:105849. [7] SALEH M N, SOUTIS C. Recent advancements in mechanical characterisation of 3D woven composites[J]. Mechanics of Advanced Materials and Modern Processes, 2017, 3:12. [8] 官威, 李文晓, 戴瑛, 等. 纺织复合材料预制体变形研究综述[J]. 航空制造技术, 2021, 64(增刊1):22-37. GUAN W, LI W X, DAI Y, et al. A review of study on deformation of textile composite preforms[J]. Aeronautical Manufacturing Technology, 2021, 64(Sup. 1):22-37(in Chinese). [9] LEGRAND X, BOUSSU F, NAUMAN S, et al. Forming behaviour of warp interlock composite[J]. International Journal of Material Forming, 2009, 2(1):177-180. [10] ANSAR M, WANG X W, ZHOU C W. Modeling strategies of 3D woven composites:A review[J]. Composite Structures, 2011, 93(8):1947-1963. [11] KIASAT M S, SANGTABI M R. Effects of fiber bundle size and weave density on stiffness degradation and final failure of fabric laminates[J]. Composites Science and Technology, 2015, 111:23-31. [12] 王立朋, 燕瑛, 曾东, 等. 厚度对混合机织复合材料低速冲击和准静态横向压缩性能的影响[J]. 航空学报, 2007, 28(1):213-216. WANG L P, YAN Y, ZENG D, et al. Influence of thickness on low-speed impact and quasi-static indentation performances of mixed woven composites[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):213-216(in Chinese). [13] WARREN K C, LOPEZ-ANIDO R A, GOERING J. Experimental investigation of three-dimensional woven composites[J]. Composites Part A:Applied Science and Manufacturing, 2015, 73:242-259. [14] DAI S, CUNNINGHAM P R, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites[J]. Composites Part A:Applied Science and Manufacturing, 2015, 69:195-207. [15] SALEH M N, YUDHANTO A, POTLURI P, et al. Characterising the loading direction sensitivity of 3D woven composites:Effect of z-binder architecture[J]. Composites Part A:Applied Science and Manufacturing, 2016, 90:577-588. [16] PANKOW M, JUSTUSSON B, RIOSBAAS M, et al. Effect of fiber architecture on tensile fracture of 3D woven textile composites[J]. Composite Structures, 2019, 225:111139. [17] 赵哲, 温卫东, 宋健, 等. 2.5维机织复合材料的纬向力学性能试验[J]. 航空动力学报, 2017, 32(11):2729-2736. ZHAO Z, WEN W D, SONG J, et al. Test of the weft mechanical properties of 2.5D woven composites[J]. Journal of Aerospace Power, 2017, 32(11):2729-2736(in Chinese). [18] JIAO W, CHEN L, XIE J B, et al. Effect of weaving structures on the geometry variations and mechanical properties of 3D LTL woven composites[J]. Composite Structures, 2020, 252:112756. [19] 郭瑞卿, 张一帆, 吕庆涛, 等. 多层多向层联三维机织复合材料的拉伸性能[J]. 复合材料学报, 2020, 37(10):2409-2417. GUO R Q, ZHANG Y F, LV Q T, et al. Tensile properties of multilayer multiaxial interlock 3D woven composites[J]. Acta Materiae Compositae Sinica, 2020, 37(10):2409-2417(in Chinese). [20] 刘刚. 三维机织复合材料拉伸和剪切损伤与失效分析[D]. 哈尔滨:哈尔滨工业大学, 2019. LIU G. Tensile and shear damage and failure analysis of 3D woven composites[D]. Harbin:Harbin Institute of Technology, 2019(in Chinese). [21] TAN P, TONG L Y, STEVEN G P, et al. Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation[J]. Composites Part A:Applied Science and Manufacturing, 2000, 31(3):259-271. [22] 张睿诚. 数字图像相关方法在应变测量中的应用研究[D]. 重庆:重庆大学, 2017. ZHANG R C. The application of digital image correlation method in strain measurement[D]. Chongqing:Chongqing University, 2017(in Chinese). [23] 白晓虹. 数字图像相关(DIC)测量方法在材料变形研究中的应用[D]. 沈阳:东北大学, 2011. BAI X H. Application of digital image correlation method in study of material deformation[D]. Shenyang:Northeastern University, 2011(in Chinese). [24] WANG Y, CHEN X G, YOUNG R, et al. A numerical and experimental analysis of the influence of crimp on ballistic impact response of woven fabrics[J]. Composite Structures, 2016, 140:44-52. [25] MAQSOOD M, HUSSAIN T, NAWAB Y, et al. Prediction of warp and weft yarn crimp in cotton woven fabrics[J]. The Journal of the Textile Institute, 2015, 106(11):1180-1189. [26] ZHOU G, SUN Q, LI D, et al. Effects of fabric architectures on mechanical and damage behaviors in carbon/epoxy woven composites under multiaxial stress states[J]. Polymer Testing, 2020, 90:106657. [27] ZHOU G W, SUN Q P, MENG Z X, et al. Experimental investigation on the effects of fabric architectures on mechanical and damage behaviors of carbon/epoxy woven composites[J]. Composite Structures, 2021, 257:113366. [28] 杨彩云, 李嘉禄. 三维机织复合材料力学性能的各向异性[J]. 复合材料学报, 2006, 23(2):59-64. YANG C Y, LI J L. Mechanical anisotropy of three dimensional woven composites[J]. Acta Materiae Compositae Sinica, 2006, 23(2):59-64(in Chinese). [29] DAGGUMATI S, VOET E, PAEPEGEM W V, et al. Local strain in a 5-harness satin weave composite under static tension:Part I-Experimental analysis[J]. Composites Science and Technology, 2011, 71(8):1171-1179. [30] DAI S, CUNNINGHAM P R, MARSHALL S, et al. Open hole quasi-static and fatigue characterisation of 3D woven composites[J]. Composite Structures, 2015, 131:765-774. |