[1] PAPATHAKIS K V, KLOESEL K J, LIN Y, et al. NASA turbo-electric distributed propulsion bench[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston:AIAA, 2016. [2] GLADIN J C, TRAWICK D, PERULLO C, et al. Modeling and design of a partially electric distributed aircraft propulsion system with GT-HEAT[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017. [3] ECONOMOU J T, TSOURDOS A, WANG S Q. Design of a Distributed Hybrid Electric Propulsion System for a Light Aircraft based on genetic algorithm[C]//AIAA Propulsion and Energy 2019 Forum. Reston:AIAA, 2019. [4] FREDERICKS W J, MOORE M D, BUSAN R C. Benefits of hybrid-electric propulsion to achieve 4x cruise efficiency for a VTOL UAV[C]//2013 International Powered Lift Conference. Reston:AIAA, 2013. [5] WROBLEWSKI G E, ANSELL P J. Mission analysis and emissions for conventional and hybrid-electric commercial transport aircraft[J]. Journal of Aircraft, 2019, 56(3):1200-1213. [6] WALL T J, MEYER R. A survey of hybrid electric propulsion for aircraft[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston:AIAA, 2017. [7] DE VRIES R, BROWN M, VOS R. Preliminary sizing method for hybrid-electric distributed-propulsion aircraft[J]. Journal of Aircraft, 2019, 56(6):2172-2188. [8] BODSON M, SADEY D J, HUNKER K R, et al. Hybrid electric propulsion using doubly fed induction machines[J]. Journal of Propulsion and Power, 2019, 36(1):78-87. [9] RIBOLDI C E D. Energy-optimal off-design power management for hybrid-electric aircraft[J]. Aerospace Science and Technology, 2019, 95:105507. [10] LAMMEN W, VANKAN J. Energy optimization of single aisle aircraft with hybrid electric propulsion[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020. [11] FINGER D F, BRAUN C, BIL C. Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft[J]. Journal of Aircraft, 2020, 57(5):843-853. [12] FINGER D F, DE VRIES R, VOS R, et al. A comparison of hybrid-electric aircraft sizing methods[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020. [13] FINGER D F, BRAUN C, BIL C. Impact of engine failure constraints on the initial sizing of hybrid-electric GA aircraft[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019. [14] FINGER D F, BIL C, BRAUN C. Initial sizing methodology for hybrid-electric general aviation aircraft[J]. Journal of Aircraft, 2020, 57(2):245-255. [15] TYAN M, NGUYEN N V, KIM S, et al. Comprehensive preliminary sizing/resizing method for a fixed wing-VTOL electric UAV[J]. Aerospace Science and Technology, 2017, 71:30-41. [16] 唐伟, 宋笔锋, 曹煜, 等. 微小型电动垂直起降无人机总体设计方法及特殊参数影响[J]. 航空学报, 2017, 38(10):220972. TANG W, SONG B F, CAO Y, et al. Preliminary design method for miniature electric-powered vertical take-off and landing unmanned airial vehicle and effects of special parameters[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):220972(in Chinese). [17] ECONOMOU J T, TSOURDOS A, WANG S Q. Design of a Distributed Hybrid Electric Propulsion System for a Light Aircraft based on genetic algorithm[C]//AIAA Propulsion and Energy 2019 Forum. Reston:AIAA, 2019. [18] 张啸迟, 万志强, 章异嬴, 等. 旋翼固定翼复合式垂直起降飞行器概念设计研究[J]. 航空学报, 2016, 37(1):179-192. ZHANG X C, WAN Z Q, ZHANG Y Y, et al. Conceptual design of rotary wing and fixed wing compound VTOL aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):179-192(in Chinese). [19] ZENG C, ABNOUS R, GABANI K, et al. A new tilt-arm transitioning unmanned aerial vehicle:introduction and conceptual design[J]. Aerospace Science and Technology, 2020, 99:105755. [20] GU H W, LYU X M, LI Z X, et al. Development and experimental verification of a hybrid vertical take-off and landing (VTOL) unmanned aerial vehicle(UAV)[C]//2017 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway:IEEE Press, 2017:17060535. [21] FRIEDRICH C, ROBERTSON P A. Hybrid-electric propulsion for aircraft[J]. Journal of Aircraft, 2015, 52(1):176-189. [22] HARMON F G, FRANK A A, CHATTOT J J. Conceptual design and simulation of a small hybrid-electric unmanned aerial vehicle[J]. Journal of Aircraft, 2006, 43(5):1490-1498. [23] 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报, 2021, 42(3):624037. HUANG J. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):624037(in Chinese). [24] GUDMUNDSSON S. General aviation aircraft design:applied methods and procedures[M]. Oxford:Butterworth-Heinemann, 2014. [25] LEISHMANN J G. Principles of helicopter aerodynamics[M]. 2nd ed. Cambridge:Cambridge University Press, 2006. [26] GUNDLACH J. Designing unmanned aircraft systems:A comprehensive approach[M]. 2nd ed. Washington, D.C.:AIAA, Inc., 2014. [27] SULLIVAN U V. Sullivan alternators[EB/OL].(2018-08-15)[2021-02-07]. https://www.sullivanuv.com/products/alternators/. [28] ROSKAM J, LAN C. Airplane aerodynamics and performance[M]. Lawrence:DARcorporation, 1997:286-298. [29] RAYMER D. Aircraft design:A conceptual approach[M]. 5th ed. Washington, D.C.:AIAA, Inc., 2012. [30] GLADIN J C, TRAWICK D, PERULLO C, et al. Modeling and design of a partially electric distributed aircraft propulsion system with GT-HEAT[C]//55th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2017. |