ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2021, Vol. 42 ›› Issue (3): 24111-024111.doi: 10.7527/S1000-6893.2020.24111
• Review • Previous Articles Next Articles
LI Jun, LI Zhiyu, LI Zhigang, ZHANG Kaiyuan, SONG Liming
Received:
2020-04-20
Revised:
2020-06-16
Published:
2020-07-27
Supported by:
CLC Number:
LI Jun, LI Zhiyu, LI Zhigang, ZHANG Kaiyuan, SONG Liming. Aerothermal performance of high pressure turbine stage with combustor-turbine interactions: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 24111-024111.
[1] BUNKER R S. Gas turbine heat transfer:Ten remaining hot gas path challenges[J]. Journal of Turbomachinery, 2007, 129(2):193-201. [2] SCHNEIDER M. Robust aero-thermal design of high pressure turbines at uncertain exit conditions of low-emission combustion systems[D]. Darmstadt:Darmstadt University of Technology, 2019. [3] MASIOL M, HARRISON R M. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution:A review[J]. Atmospheric Environment, 2014, 95:409-455. [4] BUTLER T L, SHARMA O P, JOSLYN H D, et al. Redistribution of an inlet temperature distortion in an axial flow turbine stage[J]. Journal of Propulsion and Power, 1989, 5(1):64-71. [5] JACOBI S, MAZZONI C, ROSIC B, et al. Investigation of unsteady flow phenomena in first vane caused by combustor flow with swirl[J]. Journal of Turbomachinery, 2017, 139(4):041006. [6] 王志多. 进口热斑等非均匀性对燃气透平高压级流动与传热特性影响的研究[D]. 西安:西安交通大学,2018. WANG Z D. Study on influence of inlet hot streak and other non-uniformities on aerodynamic and heat transfer characteristics in gas turbine stage[D]. Xi'an:Xi'an Jiaotong University, 2018(in Chinese). [7] 赵庆军. 无导叶对转涡轮流动特性分析及其进口热斑迁移机理研究[D]. 北京:中国科学院工程热物理研究所, 2007. ZHAO Q J. Investigation on flow characteristics and migration mechanisms of inlet hot streaks in a vaneless counter-rotating turbine[D]. Beijing:Institute of Engineering Thermophysics, Chinese Academy of Science, 2007(in Chinese). [8] YIN H, LIU S, FENG Y, et al. Experimental test rig for combustor-turbine interaction research and test results analysis:GT2015-42209[R]. New York:ASME, 2015. [9] 谢金伟,刘志刚,张晓东,等. 涡轮叶栅进口热斑迁移及其影响因素研究试验装置设计[J]. 燃气涡轮试验与研究, 2018, 31(2):1-7,15. XIE J W, LIU Z G, ZHANG X D, et al. Design of an experimental apparatus for turbine cascade inlet hot streak migration and influence research[J]. Gas Turbine Experiment and Research, 2018, 31(2):1-7,15(in Chinese). [10] ASLANIDOU I. Combustor and turbine aerothermal interactions in gas turbines with can combustors[D].Oxford:University of Oxford, 2015. [11] BACCI T. Experimental investigation on a high pressure HGV cascade in the presence of a representative lean burn aero-engine combustor outflow[D]. Florence:University of Florence, 2017. [12] WERSCHNIK H. Aerodynamic impact of swirl combustor inflow in endwall heat transfer and the robustness of the film cooling design in an axial turbine[D]. Darmstadt:Darmstadt University of Technology, 2017. [13] BEARD P F, ADAMS M G, NAGAWAKAR J R, et al. The LEMCOTEC 1.5 stage film-cooled HP turbine:Design, integration and testing in the oxford turbine research facility[C]//Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, 2019. [14] KRUMME A, TEGELER M, GATTERMANN S. Design, integration and operation of a rotating combustor-turbine-interaction test rig within the scope of EC FP7 project factor[C]//Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, 2019. [15] REHDER H J, PAHS A, BITTNER M, et al. Next generation turbine testing at DLR:GT2017-64409[R]. New York:ASME, 2017. [16] 蒋洪德,任静,尹洪. 燃气轮机燃烧室与透平交互作用研究进展[J]. 热力透平, 2013, 42(4):211-216, 224. JIANG H D, REN J, YIN H. Recent development of gas turbine combustor and turbine interaction effects[J]. Thermal Turbine, 2013, 42(4):211-216, 224(in Chinese). [17] 黄家骅,王会社,赵庆军,等. 涡轮进口热斑研究的进展及展望[J]. 飞航导弹,2007(10):47-50. HUANG J H, WANG H S, ZHAO Q J, et al. Review of investigation of inlet hot streak on turbines[J]. Aerodynamic Missle Journal, 2007(10):47-50(in Chinese). [18] SIMONE S, MONTOMOLI F, MARTELLI F, et al. Analysis on the effect of a nonuniform inlet profile on heat transfer and fluid flow in turbine stages[J]. Journal of Turbomachinery, 2011, 134(1):011012. [19] 丰镇平,王志多,刘兆方. 燃气透平进口热斑迁移及其影响机制研究进展[J]. 中国电机工程学报, 2014, 34(29):5120-5130. FENG Z P, WANG Z D, LIU Z F. Review on research of hot streak migration mechanisms in gas turbine stage[J]. Proceedings of the CSEE, 2014, 34(29):5120-5130(in Chinese). [20] DORNEY D J, GUNDY-BURLET K L, SONDAK D L. A survey of hot streak experiments and simulations[J]. International Journal of Turbo Jet-Engines, 1999, 16(1):1-16. [21] SCHWAB J R, STABE R G, WHITNEY W J. Analytical and experimental study of flow through an axial turbine stage with a nonuniform inlet radial temperature profile:AIAA-1983-1175[R]. Reston:AIAA, 1983. [22] STABE R G, WHITNEY W J, MOFITT T P. Performance of a high-work low aspect ratio turbine tested with a realistic inlet radial temperature profile:AIAA-1984-1161[R]. Reston:AIAA, 1984. [23] DORNEY D J, DAVIS R L, EDWARDS D E, et al. Unsteady analysis of hot streak migration in a turbine stage[J]. Journal of Propulsion and Power, 1992, 8(2):520-529. [24] DORNEY D J, GUNDY-BURLET K L. Hot-streak clocking effects in a 1-1/2 stage turbine[J]. Journal of Propulsion and Power, 1996, 12(3):619-620. [25] ROBACK R J, DRING R P. Hot streaks and phantom cooling in a turbine rotor passage:Part 1-Separate effects[J]. Journal of Turbomachinery, 1993, 115(4):657-666. [26] ROBACK R J, DRING R P. Hot streaks and phantom cooling in a turbine rotor passage:Part 2-Combined effects and analytical modeling[J]. Journal of Turbomachinery, 1993, 115(4):667-674. [27] SHANG T, GUENETTE G R, EPSTEIN A H, et al. The influence of inlet temperature distortion on rotor heat transfer in a transonic turbine:AIAA-1995-3042[R]. Reston:AIAA, 1995. [28] SHANG T, EPSTEIN A H. Analysis of hot streak effects on turbine rotor heat load[J]. Journal of Turbomachinery, 1997, 119(3):544-553. [29] 董素艳,刘松龄,朱惠人. 涡轮级进口温度分布不均匀时流场和温度场的非定常数值模拟[J]. 西北工业大学学报, 2001, 19(3):345-348. DONG S Y, LIU S L, ZHU H R. An inviscid numerical simulation of unsteady flow in turbine stage with inlet temperature distortion[J]. Journal of Northwestern Polytechnical University, 2001, 19(3):345-348(in Chinese). [30] 董素艳,刘松龄,朱惠人. 进口热斑对涡轮级影响的非定常数值模拟[J]. 航空动力学报, 2001, 16(3):242-248. DONG S Y, LIU S L, ZHU H R. Unsteady numerical simulation on the effects of hot streak phenomena on turbine stage[J]. Journal of Aerospace Power, 2001, 16(3):242-248(in Chinese). [31] COLBAN W F, THOLE K A, ZESS G. Combustor turbine interface studies-Part 1:Endwall effectiveness measurements[J]. Journal of Turbomachinery, 2003, 125(2):193-202. [32] COLBAN W F, LETHANDER A T, THOLE K A, et al. Combustor turbine interface studies-Part 2:Flow and thermal field measurements[J]. Journal of Turbomachinery, 2003, 125(2):203-209. [33] JENKINS S, VARADARAJAN K, BOGARD D G. The effects of high mainstream turbulence and turbine vane film cooling on the dispersion of a simulated hot streak[J]. Journal of Turbomachinery, 2004, 126(1):203-211. [34] JENKINS S C, BOGARD D G. Scaling of guide vane coolant profiles and the reduction of a simulated hot streak[J]. Journal of Turbomachinery, 2007, 129(3):619-627. [35] 闫朝,内田澄生,坂元康郎,等. 热斑对涡轮二级静叶热负荷影响的实验和数值研究[J]. 推进技术, 2004, 25(6):517-520. YAN Z, UCHIDA S, SAKAMOTO Y, et al., Experimental and numerical investigation on the effect of hot streak on the 2nd vane in turbine[J]. Journal of Propulsion Technology, 2004, 25(6):517-520(in Chinese). [36] 刘高文,刘松龄. 热斑在1-1/2级涡轮内的非定常迁移数值模拟[J]. 航空动力学报, 2004, 19(6):855-859. LIU G W, LIU S L. Numerical simulation of unsteady hot streak migration in a 1-1/2 stage turbine[J]. Journal of Aerospace Power, 2004, 19(6):855-859(in Chinese). [37] 刘高文,刘松龄. 用气膜冷却来防止热斑引起的涡轮叶片过热[J]. 推进技术, 2005, 26(6):485-488. LIU G W, LIU S L. Using film cooling to keep the turbine blade from overheat induced by hot streaks[J]. Journal of Propulsion Technology, 2005, 26(6):485-488(in Chinese). [38] HE L, HALLER B R. Influence of hot streak circumferential length-scale in transonic turbine stage:GT2004-53370[R]. New York:ASME, 2004. [39] HE L, MENSHIKOVA V, HALLER B R. Effect of hot-streak counts on turbine blade heat load and forcing[J]. Journal of Propulsion and Power, 2007, 23(6):1235-1241. [40] BARRINGER M D, THOLE K A, POLANKA M D. Developing a combustor simulator for investigating high pressure turbine aerodynamics and heat transfer:GT2004-53613[R]. New York:ASME, 2004. [41] BARRINGER M D, THOLE K A, POLANKA M D. Experimental evaluation of an inlet profile generator for high pressure turbine tests[J]. Journal of Turbomachinery, 2007, 129(2):382-393. [42] BARRINGER M D, THOLE K A, POLANKA M D, et al. Migration of combustor exit profiles through high pressure turbine vanes[J]. Journal of Turbomachinery, 2009, 131(4):021010. [43] BARRINGER M D, THOLE K A, POLANKA M D. Effects of combustor exit profiles on vane aerodynamic loading and heat transfer in a high pressure turbine[J]. Journal of Turbomachinery, 2009, 131(2):021008. [44] AN B, LIU J, JIANG H. Numerical investigation on unsteady effects of hot streak on flow and heat transfer in a turbine stage[J]. Journal of Turbomachinery, 2009, 131(7):031015. [45] 李宇,邹正平,刘火星,等. 叶片安装角偏差对涡轮通道内热斑迁移的影响[J]. 工程热物理学报, 2009, 30(6):944-948. LI Y, ZOU Z P, LIU H X, et al. Influence of blade-stagger departure on the migration of hot streak in turbine stage[J]. Journal of Engineering Thermophysics, 2009, 30(6):944-948(in Chinese). [46] POVEY T, CHANA K S, JONES T V, et al. The effect of hot streak on HP vane surface and endwall heat transfer:An experimental and numerical study[J]. Journal of Turbomachinery, 2007, 129(1):32-43. [47] POVEY T, QURESHI I. Developments in hot-streak simulators for turbine testing[J]. Journal of Turbomachinery, 2009, 131(3):031009. [48] QURESHI I, BERETTA A, POVEY T. Effect of simulated combustor temperature nonuniformity on HP vane and end wall heat transfer:An experimental and computational investigation[J]. Journal of Engineering for Gas Turbines and Power, 2010, 133(3):031901. [49] QURESHI I, SMITH A D, CHANA K S, et al. Effect of temperature nonuniformity on heat transfer in an unshrouded transonic HP turbine:An experimental and computational investigation[J]. Journal of Turbomachinery, 2012, 134(1):011005. [50] QURESHI I, SMITH A, POVEY T. HP vane aerodynamics and heat transfer in the presence of aggressive inlet swirl[J]. Journal of Turbomachinery, 2012, 135(2):021040. [51] MATHISON R M, HALDEMAN C W, DUNN M G. Aerodynamics and heat transfer for a cooled one and one-half stage high-pressure turbine-Part I:Vane inlet temperature profile generation and migration[J]. Journal of Turbomachinery, 2012, 134(1):011006. [52] MATHISON R M, HALDEMAN C W, DUNN M G. Aerodynamics and heat transfer for a cooled one and one-half stage high-pressure turbine-Part Ⅱ:Influence of inlet temperature profile on blade row and shroud[J]. Journal of Turbomachinery, 2012, 134(1):011007. [53] MATHISON R M, HALDEMAN C W, DUNN M G. Aerodynamics and heat transfer for a cooled one and one-half stage high-pressure turbine-Part Ⅲ:Impact of hot-streak characteristics on blade row heat flux[J]. Journal of Turbomachinery, 2012, 134(1):011008. [54] ONG J, MILLER R J. Hot streak and vane coolant migration in a downstream rotor[J]. Journal of Turbomachinery, 2012, 134(5):051002. [55] 薛伟鹏,曾军,黄康才. 热斑迁移路径分析方法[J]. 航空动力学报, 2013, 28(10):2302-2307. XUE W P, ZENG J, HUANG K C. Analysis method of hot streak migration avenue[J]. Journal of Aerospace Power, 2013, 28(10):2302-2307(in Chinese). [56] KOUPPER C, CACIOLLI G A, GICQUEL L, et al. Development of an engine representative combustor simulator dedicated to hot streak generation[J]. Journal of Turbomachinery, 2014, 137(11):111007. [57] 李雪英,任静,蒋洪德. 燃烧室温度剖面对静叶端壁冷却的影响[J]. 工程热物理学报, 2015, 36(4):752-755. LI X Y, REN J, JIANG H D. The influence of combustor outlet temperature profile on a vane endwall[J]. Journal of Engineering Thermophysics, 2015, 36(4):752-755(in Chinese). [58] 刘兆方,王志多,丰镇平. 叶栅通道内热斑迁移受动静干涉和叶顶间隙高度影响的研究[J]. 工程热物理学报, 2015, 36(11):2344-2347. LIU Z F, WANG Z D, FENG Z P. Effect of rotor/stator interaction and tip clearance height on hot streak migration in turbine passage[J]. Journal of Engineering Thermophysics, 2015, 36(11):2344-2347(in Chinese). [59] 王志多,张文豪,刘兆方,等. 存在热斑及总压梯度时静叶正弯对透平级气热特性的影响[J]. 工程热物理学报, 2016, 37(4):734-740. WANG Z D, ZHANG W H, LIU Z F, et al. Effects of vane position lean on aero-thermal performance of a high pressure turbine with inlet hot streak and pressure nonuniformity[J]. Journal of Engineering Thermophysics, 2016, 37(4):734-740(in Chinese). [60] FENG Z, LIU Z, SHI Y. Effects of hot streak and airfoil clocking on heat transfer and aerodynamic characteristics in gas turbine[J]. Journal of Turbomachinery, 2016, 138(2):021002. [61] WANG Z, LIU Z, FENG Z. Influence of mainstream turbulence intensity on heat transfer characteristics of a high pressure turbine stage with inlet hot streak[J]. Journal of Turbomachinery, 2016, 138(4):041005. [62] CHI Z, LIU H, ZANG S, et al. Full-annulus URANS study on the transportation of combustion inhomogeneity in a four-stage cooled turbine[J]. Journal of Turbomachinery, 2019, 141(11):111003. [63] 王天壹,宣益民. 热斑迁移路径上非定常气膜冷却特性研究[J]. 工程热物理学报, 2018, 39(9):1991-1996. WANG T Y, XUAN Y M. Investigation of unsteady film cooling characteristics on the hot streak mogration path[J]. Journal of Engineering Thermophysics, 2018, 39(9):1991-1996(in Chinese). [64] GAETANI P, PERSICO G, PINELLI L, et al. Computational and experimental study of hot streak transport within the first stage of a gas turbine:GT2019-91276[R]. New York:ASME, 2019. [65] JI L C, XU J Z, CHEN J. Study of hot streak effects in a counter-rotating turbine:2001-GT-0173[R]. New York:ASME, 2001. [66] 季路成,杨吉,徐建中. 关于1+1对转涡轮中热痕现象的研究[J]. 工程热物理学报, 2001, 22(6):683-686. JI L C, YANG J, XU J Z. Investigations about the hot streak in the counter-rotating turbine[J]. Journal of Engineering Thermophysics, 2001, 22(6):683-686(in Chinese). [67] 王宝臣,季路成. 缘线匹配指导下热痕迁移现象的数值研究[J]. 工程热物理学报, 2009, 29(5):751-754. WANG B C, JI L C. Numerical investigation on hot streak migration under the guidance of edge-matching technology[J]. Journal of Engineering Thermophysics, 2009, 29(5):751-754(in Chinese). [68] ZHAO Q J, WANG H S, ZHAO X L, et al. Numerical investigation on the influence of hot streak temperature ratio in a high-pressure stage of vaneless counter-rotating turbine[J]. International Journal of Rotating Machinery, 2007, 2007:056097. [69] 赵庆军,王会社,赵晓路,等. 无导叶对转涡轮进口热斑迁移特性分析[J]. 工程热物理学报, 2007, 28(1):40-42. ZHAO Q J, WANG H S, ZHAO X L, et al. Numerical investigation of 3-D unsteady hot streak migration in a vaneless counter-rotating turbine[J]. Journal of Engineering Thermophysics, 2007, 28(1):40-42(in Chinese). [70] 赵庆军,杨中,王会社,等. 进口热斑径向作用位置对无导叶对转涡轮高压级温度场的影响[J]. 工程热物理学报, 2008, 131(3):1629-1652. ZHAO Q J, YANG Z, WANG H S, et al. Effects of radial location of inlet hot streak on temperature distribution in high pressure stage of a vaneless counter-rotating turbine[J]. Journal of Engineering Thermophysics, 2008, 131(3):1629-1652(in Chinese). [71] 赵庆军,王会社,唐菲,等. 进口热斑在无导叶对转涡轮高压级中迁移的控制因素分析[J]. 中国科学E辑:技术科学, 2008, 38(1):55-71. ZHAO Q J, WANG H S, TANG F, et al. Investigation of influencing factors of hot streaks migration in high pressure stage of a vaneless counter-rotating turbine[J]. Science in China Series E-Technological Science, 2008, 38(1):55-71(in Chinese). [72] ZHAO Q J, WANG H S, ZHAO X L, et al. Tip-clearance effects on hot-streak migration in low-pressure stage of vaneless counter-rotating turbine[J]. Journal of Propulsion and Power, 2009, 25(4):940-948. [73] KHANAL B, HE L, NORTHALL J, et al. Analysis of radial migration of hot-streak in swirl flow through high-pressure turbine stage[J]. Journal of Turbomachinery, 2013, 135(7):041005. [74] ADAMS M G, POVEY T, HALL B F, et al. Commissioning of a combined hot-streak and swirl profile generator in a transonic turbine test facility[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(3):031008. [75] SALVADORI S, OTTANELLI L, JONSSON M, et al. Investigation of high-pressure turbine endwall film-cooling performance under realistic inlet conditions[J]. Journal of Propulsion and Power, 2012, 28(4):799-810. [76] GILLER L, SCHIFFER H P. Interactions between the combustor swirl and the high pressure stator of a turbine:GT2012-69157[R]. New York:ASME, 2012. [77] QURESHI I, BERETTA A, CHANA K, et al. Effects of aggressive inlet swirl on heat transfer and aerodynamics in an unshrouded transonic HP turbine[J]. Journal of Turbomachinery, 2012, 134(11):061023. [78] ANDREINI A, CACIOLLI G, FACCHINI B, et al. Experimental investigation of the flow field and the heat transfer on a scaled cooled combustor liner with realistic swirling flow generated by a lean-burn injection system[J]. Journal of Turbomachinery, 2014, 137(3):031012. [79] SCHMID G, KRICHBAUM A, WERSCHNIK H, et al. The impact of realistic inlet swirl in a 1-1/2 stage axial turbine:GT2014-26716[R]. New York:ASME, 2014. [80] 刘兆方,王志多,丰镇平. 燃气透平进口旋流对热斑迁移及动叶热负荷影响的研究[J]. 工程热物理学报, 2016, 37(8):1641-1647. LIU Z F, WANG Z D, FENG Z P. Study on the effect of inlet swirl on hot streak migration and rotor heat load in gas turbine[J]. Journal of Engineering Thermophysics, 2016, 37(8):1641-1647(in Chinese). [81] 李毅飞,马灿,苏欣荣,等. 热斑旋流对燃气透平高压静叶的影响研究[J]. 工程热物理学报, 2016, 37(6):1189-1193. LI Y F, MA C, SU X R, et al. The effect of hot streak and swirl in nozzle guide vane passage of gas turbine[J]. Journal of Engineering Thermophysics, 2016, 37(6):1189-1193(in Chinese). [82] PERDICHIZZI A, ABDEH H, BARIGOZZI G, et al. Aerothermal performance of a nozzle vane cascade with a generic nonuniform inlet flow condition-Part I:Influence of nonuniformity location[J]. Journal of Turbomachinery, 2017, 139(3):031002. [83] BARIGOZZI G, PERDICHIZZI A, ABDEH H, et al. Aerothermal performance of a nozzle vane cascade with a generic nonuniform inlet flow condition-Part Ⅱ:Influence of purge and film cooling injection[J]. Journal of Turbomachinery, 2017, 139(10):101004. [84] WERSCHNIK H, SCHIFFER H P, STEINHAUSEN C. Robustness of turbine endwall film cooling design to swirling combustor inflow[J]. Journal of Propulsion and Power, 2017, 33(4):917-926. [85] BACCI T, LENZI T, PICCHI A, et al. Flow field and hot streak migration through a high pressure cooled vanes with representative lean burn combustor outflow[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(4):041020. [86] CUBEDA S, MAZZEI L, BACCI T, et al. Impact of predicted combustor outlet conditions on the aerothermal performance of film-cooled high pressure turbine vanes[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(5):051011. [87] 王志多,牟善聪,王志豪,等. 进口旋流对热斑和端壁槽缝泄漏流迁移影响的研究[J]. 工程热物理学报, 2019, 40(2):275-281. WANG Z D, MU S C, WANG Z H, et al. Effects of inlet swirl on the migration of hot streak and endwall slot leakage flow[J]. Journal of Engineering Thermophysics, 2019, 40(2):275-281(in Chinese). [88] KRUMME A, BUSKE C, BACHNER J R, et al. Investigation of combustor-turbine-interaction in a rotating cooled transonic high-pressure turbine test rig:Part 1- Experimental results:GT2019-90733[R]. New York:ASME, 2019. [89] GOEVERT S, FEDERICO F, KRUMME A, et al. Investigation of combustor-turbine-interaction in a rotating cooled transonic high-pressure turbine test rig:Part 2- Numerical modelling and simulation:GT2019-90736[R]. New York:ASME, 2019. [90] BEARD P F, SMITH A D, POVEY T. Effect of combustor swirl on transonic high pressure turbine efficiency[J]. Journal of Turbomachinery, 2014, 136(1):011002. [91] JOHANSSON M, POVEY T, CHANA K, et al. Effect of low-NOX combustor swirl clocking on intermediate turbine duct vane aerodynamics with an upstream high pressure turbine stage-An experimental and computational study[J]. Journal of Turbomachinery, 2017, 139(1):011006. [92] WERSCHNIK H, HILGERT J, WILHELM M, et al. Influence of combustor swirl on endwall heat transfer and film cooling effectiveness at the large scale turbine rig[J]. Journal of Turbomachinery, 2017, 139(8):081007. [93] BACCI T, BECCHI R, PICCHI A, et al. Adiabatic effectiveness on high-pressure turbine nozzle guide vanes under realistic swirling conditions[J]. Journal of Turbomachinery, 2019, 141(1):011009. [94] ABDEH H, BARIGOZZI G, PERDICHIZZI A, et al. Incidence effect on the aero-thermal performance of a film cooled nozzle vane cascade[J]. Journal of Turbomachinery, 2019, 141(5):051005. [95] CHA C M, HONG S, IRELAND P T, et al. Experimental and numerical investigation of combustor-turbine interaction using an isothermal, nonreacting tracer[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(8):081501. [96] TURNER M G, RYDER R, NORRIS A, et al. High fidelity 3D turbofan engine simulation with emphasis on turbomachinery-combustor coupling:AIAA-2002-3769[R]. Reston:AIAA, 2002. [97] ANDREINI A, BACCI T, INSINNA M, et al. Hybrid RANS-LES modeling of the aerothermal field in an annular hot streak generator for the study of combustor-turbine interaction[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(2):021508. [98] MIKI K, MODER J, LIOU M S. Computational study of combustor-turbine interaction[J]. Journal of Propulsion and Power, 2018, 34(6):1529-1541. [99] MUIRHEAD K, LYNCH S. Computational study of combustor dilution flow interaction with turbine vanes[J]. Journal of Propulsion and Power, 2019, 35(1):54-71. [100] KOUPPER C, BONNEAU G, GICQUEL L, et al. Large eddy simulations of the combustor turbine interface:Study of the potential and clocking effects:GT2016-56443[R]. New York:ASME, 2016. [101] DUCHAIN F, DOMBARD J, GICQUEL L, et al. Integrated large eddy simulation of combustor and turbine interactions:Effect of turbine stage inlet condition:GT2017-63473[R]. New York:ASME, 2017. [102] VAGNOLI S. Assessment of advanced numerical methods for the aero-thermal investigation of combustor-turbine interactions[D]. Florence:University of Florence, 2016. [103] SCHNEIDER M, SCHIFFER H P, LEHMANN K. Uncertainty propagation analyses of lean burn combustor exit conditions for a robust nozzle cooling design[J]. Journal of Turbomachinery, 2020, 142(5):051003. |
[1] | Bowei MENG, Hu MA, Zhenjuan XIA, Changsheng ZHOU. Numerical study on characterization of integrated rotating detonation combustor and turbine guide vane [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129223-129223. |
[2] | Siji WANG, Yuwei ZHANG, Kaiming HUANG, Biao LYU, Haifeng ZHAO, Hu WANG, Mingfu LIAO. An optimization method for helicopter power turbine rotor system based on improved particle swarm optimization algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 228608-228608. |
[3] | Weiping LI, Longjin YANG. Cooling performance analysis of combustion liner in reverse-flow combustor [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 127326-127326. |
[4] | Jiaqi LUO, Zeshuai CHEN, Zhengping ZOU, Fei ZENG, Pengcheng DU. Statistics on geometric uncertainties of casting blades in low-pressure turbines [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 427203-427203. |
[5] | Zhikai WANG, Sheng CHEN, Wei FAN. Effect of neural network width on combustor emission prediction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126816-126816. |
[6] | Kailong XU, Zaigang LIU, Shengli JIANG, Xing WANG, Pan ZHANG. Treatment of boundary condition at multiple outlets with recirculating flow and specified flow ratios [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126830-126830. |
[7] | Zhihao LI, Biao ZHANG, Jian LI, Chuanlong XU, Zhaolong SONG. Reconstruction of three-dimensional refractive index field of premixed swirl combustion flame [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126480-126480. |
[8] | Zeyong YIN, Yancheng YOU, Chengxiang ZHU, Jianfeng ZHU, Liaoni WU, Yue HUANG. Multi-ducted twin-turbines ejector-ramjet/scramjet combined cycle engine for hypersonic civil vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 627181-627181. |
[9] | Youkui LAI, Haiteng MA, Yisu LIU, Hua OUYANG. Flow measurement and analysis of a turbine blade with multiple cooling structures based on magnetic resonance velocimetry [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 627920-627920. |
[10] | Kai SONG, Chi ZHANG, Chenhui YAN, Ning NING, Junling FAN, Rongbiao WANG. Reliability of aero-engine wheel model assisted eddy current testing based on two-parameter representation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 227866-227866. |
[11] | Yating FENG, Hui ZHANG. Aerodynamic drag reduction device based on rear wind energy harvesting [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 180-191. |
[12] | LIN Aqiang, LIU Gaowen, WU Heng, CHANG Ran, FENG Qing. Mechanism and theoretical analysis of pressure ratio and entropy increase in a pre-swirl system of gas turbine engine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125907-125907. |
[13] | FAN Yongsheng, YANG Xiaoguang, SHI Duoqi, TAN Long, HUANG Weiqing. Rafting-waste judgement of serviced turbine blades: quantitative characterization and threshold determination [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625100-625100. |
[14] | LIN Jing, ZHANG Boyao, ZHANG Dayi, CHEN Min. Research status and prospect of fault diagnosis for gas turbine aeroengine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 626565-626565. |
[15] | LUO Jiaqi, FU Wenhao, ZENG Xian, XIA Zhiheng. Uncertainty impact of Reynolds number on flow losses of high-lift low-pressure turbine cascade [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 125427-125427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341