[1] 梁力, 杨智春, 欧阳炎, 等. 垂尾抖振主动控制的压电作动器布局优化[J]. 航空学报, 2015, 37(10):3035-3043. LIANG L, YANG Z C, OUYANG Y, et al. Optimization of piezoelectric actuator configuration on a vertical tail for buffeting control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 37(10):3035-3043(in Chinese). [2] 王晓明, 周文雅, 吴志刚. 压电纤维复合材料驱动的机翼动态形状控制[J]. 航空学报, 2017, 38(1):154-162. WANG X M, ZHOU W Y, WU Z G. Dynamic shape control of wings using piezoelectric fiber composite materials[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):154-162(in Chinese). [3] ADRIAENS H J M T A, DE KONING W L, BANNING R. Modeling piezoelectric actuators[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(4):331-341. [4] RAKOTONDRABE M, HADDAB Y, LUTZ P. Nonlinear modeling and estimation of force in a piezoelectric cantilever[C]//IEEE/ASME International Conference on Advanced Intelligence Mechatronics. Piscataway, NJ:IEEE Press, 2007:1-6. [5] GE P, JOUANEH M. Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators[C]//Proceedings of the International Conference on Instrumentation, Control and Automation, 2011:35-40. [6] XIAO S, LI Y. Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model[J]. IEEE Transactions on Control Systems Technology, 2013, 21(5):1549-1557. [7] TAN U X, LATT W T, WIDJAJA F, et al. Tracking control of hysteretic piezoelectric actuator using adaptive rate-dependent controller[J]. Sensors and Actuators A:Physical, 2009, 150(1):116-123. [8] HASSANI V, TJAHJOWIDODO T. Integrated rate and inertial dependent Prandtl-Ishlinskii model for piezoelectric actuator[C]//International Conference on Instrumentation Control and Automation. Piscataway, NJ:IEEE Press, 2011:35-40. [9] ZHOU M, WANG S, WEI G. Hysteresis modeling of magnetic shape memory alloy actuator based on Krasnosel'skii-Pokrovskii model[J]. The Scientific World Journal, 2013, 2013:865176. [10] XU Q, LI Y. Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation[J]. Journal of Dynamic Systems Measurement and Control, 2010, 132(4):558-564. [11] RAKOTONDRABE M. Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(2):428-431. [12] LI Y, XU Q. A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nanomanipulation[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(2):265-279. [13] WANG G, CHEN G. Identification of piezoelectric hysteresis by a novel Duhem model based neural network[J]. Sensors and Actuators A:Physical, 2017, 264:282-288. [14] GU G Y, ZHU L M. Motion control of piezoceramic actuators with creep, hysteresis and vibration compensation[J]. Sensors and Actuators A Physical, 2013, 197(7):76-87. [15] SHIEH H J, CHIU Y J, CHEN Y T. Optimal PID control system of a piezoelectric microospitioner[C]//IEEE/SICE International Symposium on System Integration. Piscataway, NJ:IEEE Press, 2009:1-5. [16] LI Y, XU Q. Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator[J]. IEEE Transactions on Control Systems Technology, 2010, 18(4):798-810. [17] SU C Y, STEPANENKO Y, SVOBODA J, et al. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis[J]. IEEE Transactions on Automatic Control, 2000, 45(12):2427-2432. [18] AL JANAIDEH M, ALJANAIDEH O. Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl-Ishlinskii model[J]. Mechanical Systems and Signal Processing, 2018, 104:835-850. [19] BROKATE M, SPREKELS J. Hysteresis and phase transitions[M]. Berlin-Heidelberg-New York:Springer, 1996. [20] KUHNEN K. Modeling, identification and compensation of complex hysteretic nonlinearities:A modified Prandtl-Ishlinskii approach[J]. European Journal of Control, 2003, 9(4):407-418. [21] HASSANI V, TJAHJOWIDODO T, DO T N. A survey on hysteresis modeling, identification and control[J]. Mechanical Systems and Signal Processing, 2014, 49(1-2):209-233. [22] PESOTSKI D, JANOCHA H, KUHNEN K. Adaptive compensation of hysteretic and creep nonlinearities in solid-state actuators[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(21):1437-1446. |