[1] 刘伟. 细长机翼摇滚机理的非线性动力学分析及数值模拟方法研究[D]. 长沙:国防科学技术大学, 2004:20. LIU W. Nonlinear dynamics analysis for mechanism of slender wing rock and study of numerical simulation method[D]. Changsha:National University of Defense Technology, 2004:20(in Chinese).
[2] 杨小亮. 飞行器多自由度耦合摇滚运动数值模拟研究[D]. 长沙:国防科学技术大学, 2012:2. YANG X L. Numerical investigation of aircraft rock in multiple degrees of freedom[D]. Changsha:National University of Defense Technology, 2012:2(in Chinese).
[3] CHAMBERS J R, HALL R M. Historical review of uncommanded lateral-directional motions at transonic conditions[J]. Journal of Aircraft, 2004, 41(3):436-447.
[4] WOODSON S H, GREEN B E, CHUNG J J, et al. Understanding abrupt wing stall with computational fluid dynamics[J]. Journal of Aircraft, 2005, 42(3):578-585.
[5] FORSYTHE J R, FREMAUX C M, HALL R M. Calculation of static and dynamic stability derivatives of the F/A-18E in abrupt wing stall using RANS and DES[M]//Computational Fluid Dynamics. Berlin:Springer, 2006:537-542.
[6] 杨小亮, 刘伟, 吴天佐, 等. 细长三角翼滚转/侧滑耦合运动效应分析[J]. 空气动力学学报, 2014, 32(1):1-7. YANG X L, LIU W, WU T Z, et al. Coupling mechanism analysis of a slender delta wing in combined free-roll and free-sideslip motion[J]. Acta Aerodynamica Sinica, 2014, 32(1):1-7(in Chinese).
[7] BOYD T J M. One hundred years of G.H. Bryan's stability in aviation[J]. Journal of Aeronautical History, 2011(4):97-115.
[8] NIELSEN J N. Missile aerodynamics[M]. New York:McGraw-Hill, 1960:35.
[9] 贺国宏, 杨小亮, 赵海洋, 等. 高超声速弹头俯仰动态特性数值研究[J]. 兵工学报, 2009, 30(7):862-866. HE G H, YANG X L, ZHAO H Y, et al. Numerical study of pitching dynamic characteristic for hypersonic missile[J]. Acta Armamentarii, 2009, 30(7):862-866(in Chinese).
[10] 牟斌, 刘伟, 瞿章华. 球锥体高超声速绕流的俯仰阻尼导数的数值计算[J]. 国防科技大学学报, 2000, 22(4):5-10. MOU B, LIU W, QU Z H. Numerical calculation of damping-in-pitch derivatives for hypersonic flowover sphere-cone bodies[J]. Journal of National University of Defense Technology, 2000, 22(4):5-10(in Chinese).
[11] 伍开元. 民机空难相关非定常气动力问题研究[J]. 流体力学实验与测量, 2003, 17(2):1-9. WU K Y. Unsteady aerodynamics in fatal accidents[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(2):1-9(in Chinese).
[12] 童秉纲, 陈强. 关于非定常空气动力学[J]. 力学进展, 1983(4):377-394. TONG B G, CHEN Q. Some remarks on unsteady aerodynamics[J]. Advances in Mechanics, 1983(4):377-394(in Chinese).
[13] BRYAN G H, WILLIAMS W E. The longitudinal stability of aerial gliders[J]. Proceedings of the Royal Society of London, 1904, 73(488-496):100-116.
[14] BRYAN G H. Stability in aviation:An introduction to dynamical stability as applied to the motions of aeroplanes[J]. Nature, 1912, 88(25):406-407.
[15] ETKIN B, REID L D. Dynamics of flight:Stability and control[M]. New York:Wiley, 1996:107.
[16] ETKIN B. Dynamics of atmospheric flight[M]. New York:Dover Publications, 2012:125.
[17] TOBAK M, SCHIFF L B. Aerodynamic mathematical modeling-basic concepts[J]. AGARD Lecture Series, 1981, 77(114):1-32.
[18] TOBAK M, SCHIFF L B. On the formulation of the aerodynamic characteristics in aircraft dynamics:NASA TR R-456[R]. Washington, D.C.:NASA, 1976.
[19] VOLTERRA V. Theory of functionals and of integral and integro-differential equations[M]. New York:Dover Publications, 2005:25.
[20] TOBAK M, SCHIFF L B. The role of time-history effects in the formulation of the aerodynamics of aircraft dynamics:NASA TM 78471[R]. Washington, D.C.:NASA, 1978.
[21] 任玉新, 刘秋生, 沈孟育. 飞行器动态稳定性参数的数值计算方法[J]. 空气动力学学报, 1996, 14(2):117-126. REN Y X, LIU Q S, SHEN M Y. A numerical method for evaluating aerodynamic stability parameters of vehicles[J]. Acta Aerodynamica Sinica, 1996, 14(2):117-126(in Chinese).
[22] COWLEY W L, GLAUERT H. The effect of the lag of the downwash on the longitudinal stability of an aeroplane and on the rotary derivative Mq[M]. London:HM Stationery Office, 1921:25-33.
[23] KLEIN V, MORELLI E A. Aircraft system identification:Theory and practice[M]. Reston:AIAA, 2006:132.
[24] BOLSTER C. Effect of slipstream on the longitudinal stability of a low wing monoplane[J]. Journal of the Aeronautical Sciences, 2012, 4(10):411-416.
[25] 刘绪, 刘伟, 周云龙, 等. 吸气式内外流一体化飞行器动导数数值模拟[J]. 空气动力学学报, 2015, 33(2):147-155. LIU X, LIU W, ZHOU Y L, et al. Numerical simulation of dynamic derivatives for air-breathing hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2015, 33(2):147-155(in Chinese).
[26] ADAMS M C. Slender-body theory-review and extension[J]. Journal of the Aeronautical Sciences, 2012, 20(2):85-98.
[27] KVSSNER H. A general method for solving problems of the unsteady lifting surface theory in the subsonic range[J]. Journal of the Aeronautical Sciences, 1954, 21(1):17-26.
[28] ERICSSON L E. Generalized unsteady embedded Newtonian flow[J]. Journal of Spacecraft and Rockets, 1975, 12(12):718-726.
[29] HUI W H. Stability of oscillating wedges and caret wings in hypersonic and supersonic flows[J]. AIAA Journal, 1969, 7(8):1524-1530.
[30] ORLIK-RVCKEMANN K. Dynamic stability parameters[C]//AGARD Conference Proceedings No. 235. New York:AGARD, 1978.
[31] 任玉新. 基于敏感性分析的飞行器动导数计算方法[C]//空气动力学前沿研究学术研讨会. 北京:中国空气动力学会, 2003:390-396. REN Y X. Calculation method of dynamic derivatives based on sensitivity analysis[C]//Proceedings of the Academic Seminar on the Forefront of Aerodynamics. Beijing:Chinese Aerodynamics Research Society, 2003:390-396(in Chinese).
[32] 任玉新, 雷国东. 飞行器稳定性参数的理论与计算方法[C]//中国力学学会学术大会. 北京:中国力学学会, 2009:231-345. REN Y X, LEI G D. Theory and calculation method of aircraft stability parameter[C]//Proceedings of the Chinese Conference of Theoretical and Applied Mechanics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2009:231-245(in Chinese).
[33] 郭晨曦, 任玉新. 基于敏感性分析方法计算三维钝锥的气动稳定性导数[C]//中国力学学会学术大会. 北京:中国力学学会, 2013:182. GUO C X, REN Y X. Based on sensitivity analysis method for calculating dynamic derivatives of blunt cone[C]//Proceedings of the Chinese Conference of Theoretical and Applied Mechanics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2013:182(in Chinese).
[34] 刘伟, 牟斌. 高超声速滚转阻尼导数数值模拟[J]. 飞行力学, 2000, 18(2):27-29. LIU W, MOU B. Numerical simulation of damping-in-roll derivatives of blunt cone for hypersonic flow[J]. Flight Mechanics, 2000, 18(2):27-29(in Chinese).
[35] 刘伟, 瞿章华. 强迫振动法求解偏航阻尼导数[J]. 推进技术, 1998, 19(3):30-32. LIU W, QU Z H. Calculation of damping-in-yaw derivatives by forced oscllation method[J]. Journal of Propulsion Technology, 1998, 19(3):30-32(in Chinese).
[36] 刘伟, 牟斌. 类升力体俯仰阻尼特性数值研究[C]//第十届全国计算流体力学会议. 北京:中国力学学会, 2000:381-386. LIU W, MOU B. Numerical study of damping-in-pitch characteristics for liftbody-type[C]//Proceedings of the Tenth National Conference for Computational Fluid Dynamics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2000:381-386(in Chinese).
[37] 袁先旭, 张涵信, 谢昱飞. 基于CFD方法的俯仰静、动导数数值计算[J]. 空气动力学学报, 2005, 23(4):458-463. YUAN X X, ZHANG H X, XIE Y F. The pitching static/dynamic derivatives computation based on CFD methods[J]. Acta Aerodynamica Sinica, 2005, 23(4):458-463(in Chinese).
[38] 袁先旭, 张涵信, 谢昱飞. 基于非定常流场数值模拟的俯仰阻尼导数计算方法[C]//近代空气动力学研讨会. 北京:中国空气动力学会, 2005:301-309. YUAN X X, ZHANG H X, XIE Y F. Pitch damping derivative calculation method based on unsteady flow field numerical simulation[C]//Proceedings of the Modern Aerodynamics Conference. Beijing:Chinese Aerodynamics Research Society, 2005:301-309(in Chinese).
[39] 袁先旭, 谢昱飞, 陈亮中, 等. 飞行器静稳定性导数的非定常数值模拟研究[C]//中国力学学会学术大会. 北京:中国力学学会, 2013:181. YUAN X X, XIE Y F, CHEN L Z, et al. Study on the unsteady numerical simulation of the static stability of the aircraft[C]//Proceedings of the Chinese Conference of Theoretical and Applied Mechanics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2013:181(in Chinese).
[40] 袁先旭, 陈琦, 何琨, 等. 再入飞行器俯仰动态失稳的分叉理论与计算分析[J]. 空气动力学学报, 2015, 33(2):162-169. YUAN X X, CHEN Q, HE K, et al. Dynamic destabilization analysis of the reentry vehicles using bifurcation theory and unsteady numerical simulation[J]. Acta Aerodynamica Sinica, 2015, 33(2):162-169(in Chinese).
[41] 史爱明, 杨永年, 叶正寅. 结合CFD技术的跨音速动导数计算方法研究[J]. 西北工业大学学报, 2008, 26(1):11-14. SHI A M, YANG Y N, YE Z Y. A more accurate method for calculating transonic dynamic derivatives (TDDs) using present state-of-the-art CFD[J]. Journal of Northwestern Polytechnical University, 2008, 26(1):11-14(in Chinese).
[42] 卢学成, 叶正寅, 张伟伟. 超音速、高超音速飞行器动导数的高效计算方法[J]. 航空计算技术, 2008, 38(3):28-31. LU X C, YE Z Y, ZHANG W W. A high efficient method for computing dynamic derivatives of supersonic/hypersonic aircraft[J]. Aeronautical Computing Technique, 2008, 38(3):28-31(in Chinese).
[43] 陶洋, 范召林, 赵忠良. 基于CFD的带控制舵导弹的动导数计算[J]. 航空动力学报, 2010, 25(1):102-106. TAO Y, FAN Z L, ZHAO Z L. Predictions of dynamic damping coefficients of basic finner based on CFD[J]. Journal of Aerospace Power, 2010, 25(1):102-106(in Chinese).
[44] 陶洋, 袁先旭, 范召林, 等. 方形截面导弹摇滚特性数值研究[J]. 空气动力学学报, 2010, 28(3):285-290. TAO Y, YUAN X X, FAN Z L, et al. Numerical investigation of dynamic behavior of square section missile in roll at high incidence[J]. Acta Aerodynamica Sinica, 2010, 28(3):285-290(in Chinese).
[45] 范晶晶, 阎超, 李跃军. 飞行器大迎角下俯仰静、动导数的数值计算[J]. 航空学报, 2009, 30(10):1846-1850. FAN J J, YAN C, LI Y J. Computation of vehicle pitching static and dynamic derivatives at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1846-1850(in Chinese).
[46] 陈东阳, Laith K. ABBAS, 芮筱亭. 旋转弹箭气动导数与气动热仿真计算[J]. 计算机仿真, 2014(5):26-30. CHEN D Y, ABBAS L K, RUI X T. Aerodynamic derivative and aerodynamic heating simulation and computation of spinning vehicle[J]. Computer Simulation, 2014(5):26-30(in Chinese).
[47] 陈东阳. 超音速旋转弹箭气动特性及流固耦合计算分析[D]. 南京:南京理工大学, 2014:8-34. CHEN D Y. Aerodynamic characteristics and fluid-structure interaction computations and analysis of supersonic spinning flying vehicle[D]. Nanjing:Nanjing University of Science and Technology, 2014:8-34(in Chinese).
[48] 黄龙太, 王红伟, 姜琬. 基于CFD动网格技术的飞艇动导数计算方法[J]. 航空计算技术, 2013(6):66-68. HANG L T, WANG H W, JIANG W. A method of calculating airship dynamic derivative based on CFD dynamic mesh technique[J]. Aeronautical Computer Technique, 2013(6):66-68(in Chinese).
[49] 陈春鹏, 杨康智, 王莉萍. 飞机气动力工程估算的程序化实现方法[J]. 科技创新与应用, 2014(6):26-27. CHEN C P, YANG K Z, WANG L P. Aircraft aerodynamics engineering estimation of program implementation[J]. Technology Innovation and Application, 2014(6):26-27(in Chinese).
[50] 蒋胜矩, 刘玉琴, 党明利. 基于定常NS方程的飞行器滚转阻尼力矩系数导数计算方法[J]. 弹箭与制导学报, 2008, 28(1):180-182. JIANG S J, LIU Y Q, DANG M L. A calculation method of aircraft roll-damping moment coefficient derivative based on steady NS equation[J]. Journal of Projectiles Rockets Missiles and Guidance, 2008, 28(1):180-182(in Chinese).
[51] 孙智伟, 程泽荫, 白俊强, 等. 基于准定常的飞行器动导数的高效计算方法[J]. 飞行力学, 2010, 28(2):28-30. SUN Z W, CHENG Z Y, BAI J Q, et al. A high efficient method for computing dynamic derivatives of aircraft based on quasi-steady CFD method[J]. Flight Dynamics, 2010, 28(2):28-30(in Chinese).
[52] HALL K C, EKICI K, THOMAS J P, et al. Harmonic balance methods applied to computational fluid dynamics problems[J]. International Journal of Computational Fluid Dynamics, 2013, 27(2):52-67.
[53] 王勇献, 张理论, 车永刚, 等. 结构网格CFD应用程序在天河超级计算机上的高效并行与优化[J]. 电子学报, 2015, 43(1):36-44. WANG Y X, ZHANG L L, CHE Y G, et al. Efficient parallel computing and performance tuning for multi-block structured grid CFD applications on Tianhe supercomputer[J]. Acta Electronica Sinica, 2015, 43(1):36-44(in Chinese).
[54] 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006:152-157. YAN C. Computational fluid dynamics method and its application[M]. Beijing:Beihang University Press, 2006:152-157(in Chinese).
[55] GLAZ B, LIU L, FRIEDMANN P P. Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework[J]. AIAA Journal, 2010, 48(10):2418-2429.
[56] ROSENBAUM B, SCHULZ V. Response surface methods for efficient aerodynamic surrogate models, Vol.123:Computational flight testing[M]. Berlin:Springer, 2013:113-129.
[57] 刘绪. 高超声速内外流一体化飞行器动态特性研究[D]. 长沙:国防科学技术大学, 2011:35-49. LIU X. Investigation of dynamic characteristics of hypersonic airframe/propulsion integrative vehicle[D]. Changsha:National University of Defense Technology, 2011:35-49(in Chinese).
[58] 叶川, 马东立. 带翼潜航器动力学建模及动稳定性[J]. 北京航空航天大学学报, 2013, 39(9):1137-1143. YE C, MA D L. Dynamic modeling and stability analysis for underwater craft with wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9):1137-1143(in Chinese).
[59] 马东立, 叶川. 升力浮力复合型飞艇动导数分析[J]. 航空动力学报, 2013, 28(5):1074-1080. MA D L, YE C. Dynamic derivative analysis for hybrid airship incorporating lift and buoyancy[J]. Journal of Aerospace Power, 2013, 28(5):1074-1080(in Chinese).
[60] 米百刚, 詹浩, 王斑. 基于刚性动网格技术的动导数数值模拟[J]. 航空动力学报, 2014, 29(11):2659-2664. MI B G, ZHAN H, WANG B. Numerical simulation of dynamic derivatives based on rigid moving mesh technique[J]. Journal of Aerospace Power, 2014, 29(11):2659-2664(in Chinese).
[61] 席柯, 阎超, 黄宇, 等. 俯仰阻尼导数分量的CFD数值模拟[J]. 北京航空航天大学学报, 2015, 41(2):222-227. XI K, YAN C, HUANG Y, et al. Numerical simulation of individual components of pitch-damping coefficient sum[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2):222-227(in Chinese).
[62] 叶川, 马东立. 利用CFD技术计算飞行器动导数[J]. 北京航空航天大学学报, 2013, 39(2):196-200. YE C, MA D L. Aircraft dynamic derivatives calculation using CFD techniques[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2):196-200(in Chinese).
[63] THEODORSEN T, GARRICK I. General potential theory of arbitrary wing sections[M]. New York:US Government Printing Office,1933:77-80.
[64] VUKELICH S R, WILLIAMS J E. The USAF stability and control digital DATCOM:AFFDL-TR-79-3032[R]. Ohio:WP-AFB, 1979.
[65] SCHUMMER J. A conceptual approach[J]. HYLE-International Journal for Philosophy of Chemistry, 1998, 4(2):129-162.
[66] ROSKAM J. Airplane design:Part 2-Preliminary configuration design and integration of the propulsion system[M]. Lawrence:DAR Corporation, 1985:86.
[67] WEINACHT P. Navier-Stokes predictions of the individual components of the pitch-damping sum[J]. Journal of Spacecraft and Rockets, 1998, 35(5):598-605.
[68] EAST R A, HUTT G R. Comparison of predictions and experimental data for hypersonic pitching motion stability[J]. Journal of Spacecraft and Rockets, 1988, 25(3):225-233.
[69] 赫姆施. 战术导弹空气动力学[M]. 北京:宇航出版社, 1999:57. HEMSCH M J. Tactical missile aerodynamics[M]. Beijing:Astronautics Press, 1999:57(in Chinese).
[70] 瞿章华. 高超音速飞行器空气动力学[M]. 长沙:国防科技大学出版社, 1999:105. QU Z H. Hypersonic vehicle aerodynamics[M]. Changsha:National University of Defence Technology Press, 1999:105(in Chinese).
[71] TONG B G, HUI W. Unsteady embedded Newton-Busemann flow theory[J]. Journal of Spacecraft and Rockets, 1986, 23:129-135.
[72] 飞机设计手册总编委会. 飞机设计手册:气动设计[M]. 北京:航空工业出版社, 2002:252. Aircraft Design Manual Editorial Board. Aircraft design manual:Aerodynamic design[M]. Beijing:Aviation Industry Press, 2002:252(in Chinese).
[73] 熊海泉, 刘昶, 郑本武. 飞机飞行动力学[M]. 北京:航空工业出版社, 1990:75. XIONG H Q, LIU C, ZHEN B W. Aircraft flight dynamics[M]. Beijing:Aviation Industry Press, 1990:75(in Chinese).
[74] ROSKAM J. Airplane design Part VI:Preliminary calculation of aerodynamic, thrust and power characteristics[M]. Kansas:Aviation and Engineering Corporation, 1990:253.
[75] TOBAK M, WEHREND W R. Stability derivatives of cones at supersonic speeds:NACA TN 3788[R]. Washington, D.C.:NACA, 1956.
[76] BUSEMANN A. Handw rterbuch der naturwissenschaften, IV, Flussigkeits-mnd garbewegung[M]. Zweite Auflage. Jena:Gustav Fische, 1933:12-55. BUSEMANN A. Handbook of natural sciences, IV, Liquid and garbewegung[M]. 2nd ed. Jena:Gustav Fischer, 1933:12-55(in German).
[77] MESSITER A F. Lift of slender delta wings according to newtonian theory[J]. AIAA Journal, 1963, 1(4):794-802.
[78] MAHOOD G, HUI W. Remarks on unsteady Newtonian flow theory[J]. Aeronautical Quarterly, 1976, 27(1):66-74.
[79] HUI W, TOBAK M. Unsteady Newton-Busemann flow theory. Part 2:Bodies of revolution[J]. AIAA Journal, 1981, 19(10):1272-1273.
[80] SEIFF A. Secondary flow fields embedded in hypersonic shock layers:NASA TN D-1304[R]. Washington, D.C.:NASA,1962.
[81] ERICSSON L E. Unsteady aerodynamics of an ablating flared body of revolution including effect of entropy gradient[J]. AIAA Journal, 1968, 6(5):2395-2401.
[82] ERICSSON L E. Unsteady embedded Newtonian flow (as basis for nose bluntness effect on aerodynamics of hypersonic slender bodies)[J]. Astronautica Acta, 1973, 18(3):309-330.
[83] 刘伟, 沈清. 钝倒锥体动导数数值工程模拟[J]. 国防科技大学学报, 1998, 20(1):5-8. LIU W, SHEN Q. Numerical and analytic simulation of the dynamic stability derivative of blunt cone[J]. Journal of National University of Defense Technology, 1998, 20(1):5-8(in Chinese).
[84] VAN DYKE M D. A study of second-order supersonic flow theory[J]. Technical Report Archive & Image Library, 1952, 9(1):1081-1125.
[85] LIGHTHILL M J. Oscillating airfoils at high Mach number[J]. Journal of the Aeronauticalences, 1953, 20(6):402-406.
[86] 陈劲松. 超声速和高超声速机翼俯仰导数——当地流活塞理论解法[J]. 空气动力学学报, 1991, 9(4):469-476. CHEN J S. Pitching derivatives of wing in supersonic and hypersonic stream-method for local flow piston theory[J]. Acta Arodynamica Sinica, 1991, 9(4):469-476(in Chinese).
[87] 张伟伟, 史爱民, 王刚, 等. 结合定常CFD技术的当地流活塞理论[C]//第十二届全国计算流体力学会议. 北京:中国力学学会, 2004:371-375. ZHANG W W, SHI A M, WANG G, et al. On determining unsteady aerodynamic loads accurately and efficiently[C]//Proceedings of the Twelfth National Conference for Computational Fluid Dynamics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2004:371-375(in Chinese)
[88] ZHANG W W, YE Z Y, ZHANG C A, et al. Supersonic flutter analysis based on a local piston theory[J]. AIAA Journal, 2009, 47(10):2321-2328.
[89] 刘溢浪, 张伟伟, 田八林, 等. 一种超音速高超音速动导数的高效计算方法[J]. 西北工业大学学报, 2013, 31(5):824-828. LIU Y L, ZHANG W W, TIAN B L, et al. Effectively calculating supersonic and hypersonic dynamic derivatives[J]. Journal of Northwestern Polytechnical University, 2013, 31(5):824-828(in Chinese).
[90] HUI W H. Exact theory for the stability of an oscillating wedge in hypersonic and supersonic flows[D]. Southampton:University of Southampton, 1967:205.
[91] 刘伟, 赵海洋, 杨小亮. 飞行器动态气动特性数值模拟方法[M]. 长沙:国防科技大学出版社, 2015:172. LIU W, ZHAO H Y, YANG X L. Numerical simulation method for aerodynamic characteristics of aircraft[M]. Changsha:National University of Defense Technology Press, 2015:172(in Chinese).
[92] HUI W H, TOBAK M. Bifurcation analysis of aircraft pitching motions about large mean angles of attack[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(1):113-122.
[93] HUI W H, VAN ROESSEL H J. Transient motion of a hypersonic wedge, including time history effects[J]. Journal of Guidance, Control, and Dynamics, 1986, 9(2):205-212.
[94] 刘秋生, 沈孟育. 球锥俯仰阻尼导数的数值计算[J]. 空气动力学学报, 1995, 13(2):132-142. LIU Q S, SHEN M Y. Calculation of damping-in-pitch derivatives of sphere-cone bodies[J]. Acta Aerodynamica Sinica, 1995, 13(2):132-142(in Chinese).
[95] 张才文. 超高超声速机翼俯仰导数的欧拉方程摄动解法[J]. 空气动力学学报, 1997, 15(3):400-405. ZHANG C W. Pitching stability derivatives of wing in supersonic and hypersonic flows-perturbation method for Euler equation[J]. Acta Aerodynamica Sinica, 1997, 15(3):400-405(in Chinese).
[96] 刘伟, 张鲁民. 钝体俯仰阻尼导数数值计算[J]. 空气动力学学报, 1997, 15(4):427-435. LIU W, ZHANG L M. Numerical calculation of damping-in-pitch derivatives of blunt body[J]. Acta Aerodynamica Sinica, 1997, 15(4):427-435(in Chinese).
[97] 刘伟, 张鲁民. 谐振摄动法求解钝体俯仰阻尼导数[C]//第八届全国计算流体力学会议. 北京:中国力学学会, 1996:297-301. LIU W, ZHANG L M. Resonant perturbation method for pitch damping derivatives of bluff body[C]//Proceedings of the Eighth National Conference for Computational Fluid Dynamics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 1996:297-301(in Chinese).
[98] TOBAK M, SCHIFF L B. Generalized formulation of nonlinear pitch-yaw-roll coupling:Part I-Nonaxisymmetric bodies[J]. AIAA Journal, 1975, 13(3):323-326.
[99] SCHIFF L B. Nonlinear aerodynamics of bodies in coning motion[J]. AIAA Journal, 1972, 10(11):1517-1522.
[100] WEINACHT P, STUREK W B, SCHIFF L B. Navier-Stokes predictions of pitch-damping for axisymmetric shell using steady coning motion:ARL-TR-575[R]. Aberdeen Proving Ground, MD:U.S. Army Research Laboratory, 1994.
[101] WEINACHT P, STUREK W B. Computation of the roll characteristics of a finned projectile[J]. Journal of Spacecraft and Rockets, 1996, 33(6):769-775.
[102] DESPIRITO J, SILTON S I, WEINACHT P. Navier-Stokes predictions of dynamic stability derivatives:Evaluation of steady-state methods[J]. Journal of Spacecraft and Rockets, 2009, 46(6):1142-1154.
[103] 张一帆, 李中武, 姚冰, 等. F12全机动态特性数值模拟[J]. 航空计算技术, 2015(2):22-25. ZHANG Y F, LI Z W, YAO B, et al. Dynamic derivative simulation of F12 aircraft configuration[J]. Aeronautical Computer Technique, 2015(2):22-25(in Chinese).
[104] 米百刚, 詹浩, 朱军. 基于CFD数值仿真技术的飞行器动导数计算[J]. 空气动力学学报, 2014, 32(6):834-839. MI B G, ZHAN H, ZHU J. Calculation of dynamic derivatives for aircraft based on CFD technique[J]. Acta Aerodynamica Sinica, 2014, 32(6):834-839(in Chinese).
[105] 米百刚, 詹浩, 朱军. 基于准定常假设的飞行器滚转动导数数值模拟[J]. 弹箭与制导学报, 2013, 33(3):21-24. MI B G, ZHAN H, ZHU J. A calculation method of rolling dynamic derivatives based on quasi-steady assumption[J]. Journal of Projectiles Rockets Missiles and Guidance, 2013, 33(3):21-24(in Chinese).
[106] 牟斌, 刘伟, 瞿章华. 倒锥体高超声速滚转阻尼导数数值模拟[C]//第十届全国高超声速气动力(热)学术交流会. 北京:中国空气动力学会, 1999:20-24. MOU B, LIU W, QU Z H. Numerical simulation of hypersonic cone roll damping derivative[C]//Proceedings of the National Hypersonic Aerodynamics (Heating) Conference. Beijing:Chinese Aerodynamics Research Society, 1999:20-24(in Chinese).
[107] BOELENS O, BADCOCK K, ELMILGUI A, et al. Comparison of measured and block structured simulation results for the F-16XL aircraft[J]. Journal of Aircraft, 2009, 46(2):377-384.
[108] 任玉新. 气动稳定性导数理论与计算方法[D]. 北京:清华大学, 1992:23-57. REN Y X. Theory and calculation method of aerodynamic stability derivatives[D]. Beijing:Tsinghua University, 1992:23-57(in Chinese).
[109] 孙涛, 高正红, 黄江涛. 基于CFD的动导数计算与减缩频率影响分析[J]. 飞行力学, 2011, 29(4):15-18. SUN T, GAO Z H, HUANG J T. Identify of aircraft dynamic derivatives based on CFD technology and analysis of reduce frequency[J]. Flight Dynamics, 2011, 29(4):15-18(in Chinese).
[110] WHEELER A J, GANJI A R, KRISHNAN V V, et al. Introduction to engineering experimentation[M]. Upper Saddle River, NJ:Prentice Hall, 1996:96.
[111] 刘绪, 赵云飞, 王东方, 等. 高超声速内外流一体化飞行器动态特性[J]. 弹道学报, 2013, 25(3):38-43. LIU X, ZHAO Y F, WANG D F, et al. Dynamic characteristics of hypersonic integrative vehicle with internal and external flow[J]. Journal of Ballistics, 2013, 25(3):38-43(in Chinese).
[112] BRANDON J M, FOSTER J V. Recent dynamic measurements and considerations for aerodynamic modeling of fighter airplane configurations:AIAA-1998-4447[R]. Reston:AIAA, 1998.
[113] 刘伟, 刘君, 柳军. 平衡气体效应对飞行器动态特性的影响研究[J]. 飞行力学, 2004, 22(4):65-68. LIU W, LIU J, LIU J. Investigation of equilibrium gas effect on dynamic characteristic of aerocraft[J]. Flight Dynamics, 2004, 22(4):65-68(in Chinese).
[114] 赵文文, 陈伟芳, 邵纯, 等. 考虑多种物理效应的钝锥俯仰稳定性参数影响分析[J]. 空气动力学学报, 2013, 31(4):442-448. ZHAO W W, CHEN W F, SHAO C, et al. The research on the influence of hypersonic blunt cone pitching dynamic derivatives considering different physical effects[J]. Acta Aerodynamica Sinica, 2013, 31(4):442-448(in Chinese).
[115] 童静, 夏露, 詹浩, 等. 考虑地面效应的翼型动态特性数值模拟[J]. 航空计算技术, 2014(3):88-91. TONG J, XIA L, ZHAN H, et al. Numerical simulation on unsteady flow around an oscillating airfoil with ground effect[J]. Aeronautical Computer Technique, 2014(3):88-91(in Chinese).
[116] 赵云飞, 刘绪, 涂国华, 等. 非定常Euler方程数值计算中高精度格式应用[J]. 国防科技大学学报, 2012, 34(3):12-16. ZHAO Y F, LIU X, TU G H, et al. High-accuracy numerical method applied to calculate unsteady Euler equations[J]. Journal of National University of Defense Technology, 2012, 34(3):12-16(in Chinese).
[117] 赵文文, 陈伟芳, 邵纯, 等. 高超声速钝锥体俯仰阻尼导数影响因素分析[J]. 国防科技大学学报, 2013, 35(1):43-47. ZHAO W W, CHEN W F, SHAO C, et al. The research on the influence of hypersonic blunt cone pitching dynamic derivatives calculation[J]. Journal of National University of Defense Technology, 2013, 35(1):43-47(in Chinese).
[118] 赵云飞. 高精度格式在非定常流动中的应用研究[D]. 长沙:国防科学技术大学, 2010:105-121. ZHAO Y F. Application studies of high-order accurate schemes to unsteady flows[D]. Changsha:National University of Defense Technology, 2010:105-121(in Chinese).
[119] CLARK W S, HALL K C. A time-linearized Navier-Stokes analysis of stall flutter[J]. Journal of Turbomachinery, 2000, 122(3):467-476.
[120] VAN DER WEIDE E, GOPINATH A, JAMESON A. Turbomachinery applications with the time spectral method:AIAA-2005-4905[R]. Reston:AIAA, 2005.
[121] DUFOUR G, SICOT F, PUIGT G, et al. Contrasting the harmonic balance and linearized methods for oscillating-flap simulations[J]. AIAA Journal, 2010, 48(4):788-797.
[122] BLANC F, ROUX F X, JOUHAUD J C. Harmonic-balance-based code-coupling algorithm for aeroelastic systems subjected to forced excitation[J]. AIAA Journal, 2010, 48(11):2472-2481.
[123] PECHLOFF A N, LASCHKA B. Small disturbance Navier-Stokes method:Efficient tool for predicting unsteady air loads[J]. Journal of Aircraft, 2006, 43(1):17-29.
[124] THOMAS J P, DOWELL E H, HALL K C. Nonlinear inviscid aerodynamic effects on transonic divergence, flutter, and limit-cycle oscillations[J]. AIAA Journal, 2002, 40(4):638-646.
[125] THOMAS J, DOWELL E, HALL K, et al. Modeling limit cycle oscillation behavior of the F-16 fighter using a harmonic balance approach[C]//Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2004:297-305.
[126] THOMAS J P, DOWELL E H, HALL K C. Modeling viscous transonic limit cycle oscillation behavior using a harmonic balance approach[J]. Journal of Aircraft, 2004, 41(6):1266-1274.
[127] THOMAS J P, DOWELL E H, HALL K C, et al. Further investigation of modeling limit cycle oscillation behavior of the F-16 fighter using a harmonic balance approach:AIAA-2005-1917[R]. Reston:AIAA, 2005.
[128] HALL K C, THOMAS J P, DOWELL E H. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows[J]. AIAA Journal, 2000, 38(10):1853-1862.
[129] THOMAS J P, CUSTER C H, DOWELL E H, et al. Unsteady flow computation using a harmonic balance approach implemented about the OVERFLOW 2 flow solver[C]//Proceedings of the 19th AIAA Computational Fluid Dynamics Conference, Computational Fluid Dynamics Conference. Reston:AIAA, 2009:308-321.
[130] THOMAS J P, CUSTER C H, DOWEL E H, et al. Compact implementation strategy for a harmonic balance method within implicit flow solvers[J]. AIAA Journal, 2013, 51(6):1374-1381.
[131] SPIKER M A, THOMAS J P, KIELB R E, et al. Modeling cylinder flow vortex shedding with enforced motion using a harmonic balance approach:AIAA-2006-1965[R]. Reston:AIAA, 2006.
[132] EKICI K, HALL K C. Nonlinear analysis of unsteady flows in multistage turbomachines using harmonic balance[J]. AIAA Journal, 2007, 45(5):1047-1057.
[133] EKICI K, HALL K C. Nonlinear frequency-domain analysis of unsteady flows in turbomachinery with multiple excitation frequencies[J]. AIAA Journal, 2008, 46(8):1912-1920.
[134] EKICI K, HALL K C, DOWELL E H. Computationally fast harmonic balance methods for unsteady aerodynamic predictions of helicopter rotors[J]. Journal of Computational Physics, 2008, 227(12):6206-6225.
[135] HUANG H, EKICI K. Stabilization of high-dimensional harmonic balance solvers using time spectral viscosity[J]. AIAA Journal, 2014, 52(8):1784-1794.
[136] ALONSO J J, MCMULLEN M, JAMESON A. Acceleration of convergence to a periodic steady state in turbomachinery flows[C]//AIAA 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings. Reston:AIAA, 2001:58-69.
[137] MCMULLEN M, JAMESON A, ALONSO J. Application of a non-linear frequency domain solver to the Euler and Navier-Stokes equations:AIAA-2002-0120[R]. Reston:AIAA, 2002.
[138] MCMULLEN M, JAMESON A. The computational efficiency of non-linear frequency domain methods[J]. Journal of Computational Physics, 2005, 212(2):637-661.
[139] MCMULLEN M, JAMESON A, ALONSO J. Demonstration of nonlinear frequency domain methods[J]. AIAA Journal, 2006, 44(7):1428-1435.
[140] MOSAHEBI A, NADARAJAH S. An adaptive non-linear frequency domain method for viscous periodic steady state flows[C]//Proceedings of the 48th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings. Reston:AIAA, 2010:152-161.
[141] CHOI S, LEE K, POTSDAM M M, et al. Helicopter rotor design using a time-spectral and adjoint-based method[J]. Journal of Aircraft, 2014, 51(2):412-423.
[142] GUÉDENEY T, GOMAR A, GALLARD F, et al. Non-uniform time sampling for multiple-frequency harmonic balance computations[J]. Journal of Computational Physics, 2012, 236(2):317-345.
[143] RONCH D A, MCCRACKEN A J, BADCOCK K J, et al. Linear frequency domain and harmonic balance predictions of dynamic derivatives[J]. Journal of Aircraft, 2013, 50(3):694-707.
[144] HASSAN D, SICOT F. A time-domain harmonic balance method for dynamic derivatives predictions[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings. Reston:AIAA, 2011:352-366.
[145] MURMAN S M, AFTOSMIS M J, BERGER M J. Numerical simulation of rolling airframes using a multilevel Cartesian method[J]. Journal of Spacecraft and Rockets, 2004, 41(3):426-435.
[146] MURMAN S M. Reduced-frequency approach for calculating dynamic derivatives[J]. AIAA Journal, 2007, 45(6):1161-1168.
[147] 李道春, 向锦武. 非线性二元机翼气动弹性近似解析研究[J]. 航空学报, 2007, 28(5):1080-1084. LI D C, XIANG J W. Nonlinear aeroelastic analysis of airfoil using quasi-analytical approach[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1080-1084(in Chinese).
[148] 杜鹏程, 宁方飞. 跨声风扇周向畸变流动的谐波平衡法计算[J]. 推进技术, 2012, 33(3):391-397. DU P C, NING F F. Numerical simulation of transonic fan under circumferential inlet distortion using harmonic balance method[J]. Journal of Propulsion Technology, 2012, 33(3):391-397(in Chinese).
[149] 许建华, 宋文萍, 王龙. 谐波平衡法在旋翼前飞绕流数值模拟中的应用研究[J]. 空气动力学学报, 2013, 31(5):546-552. XU J H, SONG W P, WANG L. Application of harmonic balance method in forward flight simulation for helicopter rotors[J]. Acta Aerodynamica Sinica, 2013, 31(5):546-552(in Chinese).
[150] 杨小权, 程苏堃, 杨爱明, 等. 基于时间谱方法的振荡翼型和机翼非定常黏性绕流数值模拟[J]. 航空学报, 2013, 34(4):787-797. YANG X Q, CHENG S K, YANG A M, et al. Time spectral method for numerical simulation of unsteady viscous flow over oscillating airfoil and wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):787-797(in Chinese).
[151] 谢立军, 杨云军, 刘周, 等. 基于时间谱方法的飞行器动导数高效计算技术[J]. 航空学报, 2013, 34(6):2016-2026. XIE L J, YANG Y J, LIU Z, et al. A high efficient method for computing dynamic derivatives of aircraft based on time spectral method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):2016-2026(in Chinese).
[152] 陈琦, 陈坚强, 谢昱飞, 等. 谐波平衡法在非定常流场中的应用[J]. 航空学报, 2014, 35(3):736-743. CHEN Q, CHEN J Q, XIE Y F, et al. Application of harmonic balance method to unsteady flow field[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):736-743(in Chinese).
[153] 陈琦, 陈坚强, 袁先旭, 等. 谐波平衡法在动导数快速预测中的应用研究[J]. 力学学报, 2014, 46(2):183-190. CHEN Q, CHEN J Q, YUAN X X, et al. Application of a harmonic balance method in rapid predictions of dynamic stability derivatives[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2):183-190(in Chinese).
[154] RONCH A D. On the calculation of dynamic derivatives using computational fluid dynamics[D]. Liverpool:University of Liverpool, 2012:139.
[155] RONCH A D, VALLESPIN D, GHOREYSHI M, et al. Evaluation of dynamic derivatives using computational fluid dynamics[J]. AIAA Journal, 2012, 50(2):470-484.
[156] THOMPSON J R, FRINK N T, MURPHY P C. Guidelines for computing longitudinal dynamic stability characteristics of a subsonic transport:AIAA-2010-4819[R]. Reston:AIAA, 2010.
[157] BADCOCK K, RICHARDS B, WOODGATE M. Elements of computational fluid dynamics on block structure |