1 |
胡寿松. 自动控制原理[M]. 第6版. 北京: 科学出版社, 2013.
|
|
HU S S. Principle of automatic control[M]. 6th ed. Beijing: Science Press, 2013 (in Chinese).
|
2 |
李阳, 朱家仪, 李树民. 非线性控制理论的回顾与展望[J]. 飞航导弹, 2004(11): 55-58.
|
|
LI Y, ZHU J Y, LI S M. Review and prospect of nonlinear control theory[J]. Winged Missiles Journal, 2004(11): 55-58 (in Chinese).
|
3 |
ZHANG Y X, GAO J A, CHEN Y M, et al. Adaptive neural network control for visual docking of an autonomous underwater vehicle using command filtered backstepping[J]. International Journal of Robust and Nonlinear Control, 2022, 32(8): 4716-4738.
|
4 |
WEN G X, HAO W, FENG W W, et al. Optimized backstepping tracking control using reinforcement learning for quadrotor unmanned aerial vehicle system[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(8): 5004-5015.
|
5 |
LING S, WANG H Q, LIU P X. Adaptive fuzzy tracking control of flexible-joint robots based on command filtering[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 4046-4055.
|
6 |
XIA D D, YUE X K, YIN Y W. Output-feedback asymptotic tracking control for rigid-body attitude via adaptive neural backstepping[J]. ISA Transactions, 2023, 136: 104-113.
|
7 |
吴锦, 刘勇华, 苏春翌, 鲁仁全.具有不确定控制增益严格反馈系统的自适应命令滤波控制[J/OL]. 自动化学报, (2021-11-28)[2023-09-08]. .
|
|
WU J, LIU Y H, SU C Y, LU R Q. Adaptive Command Filtered Control of Strict Feedback Systems with Uncertain Control Gains [J/OL]. Acta Automatica Sinica, (2021-11-28)[2023-09-08]. .
|
8 |
YUAN X, CHEN B, LIN C, et al. A concurrent event-triggered approach for fuzzy adaptive control of nonlinear strict-feedback systems[J/OL]. IEEE Transactions on Cybernetics, (2022-11-23)[2023-09-08]. .
|
9 |
CHENG H, HUANG X C, CAO H W. Asymptotic tracking control for uncertain nonlinear strict-feedback systems with unknown time-varying delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 9821-9831.
|
10 |
陈建勇, 孙明轩. 严格反馈系统约束迭代学习控制[J]. 控制理论与应用, 2021, 38(5): 561-570.
|
|
CHEN J Y, SUN M X. Constrained iterative learning control of a class of strict-feedback systems[J]. Control Theory & Applications, 2021, 38(5): 561-570 (in Chinese).
|
11 |
BRIDGES M M, DAWSON D M, ABDALLAH C T. Contril of rigid-link, flexible-joint robots: A survey of backstepping approaches[J]. Journal of Robotic Systems, 1995, 12(3): 199-216.
|
12 |
DENG H, KRSTIĆ M. Stochastic nonlinear stabilization—I: A backstepping design[J]. Systems & Control Letters, 1997, 32(3): 143-150.
|
13 |
王家军, 赵光宙, 齐冬莲. 反推式控制在永磁同步电动机速度跟踪控制中的应用[J]. 中国电机工程学报, 2004, 24(8): 95-98.
|
|
WANG J J, ZHAO G Z, QI D L. Speed tracking control of permanent magnet synchronous motor with backstepping[J]. Proceedings of the CSEE, 2004, 24(8): 95-98. (in Chinese)
|
14 |
DENG Y J, ZHANG X K, ZHANG G Q, et al. Adaptive neural tracking control of strict-feedback nonlinear systems with event-triggered state measurement[J]. ISA Transactions, 2021, 117: 28-39.
|
15 |
杨俊华, 吴捷, 胡跃明. 反步方法原理及在非线性鲁棒控制中的应用[J]. 控制与决策, 2002, 17(S1): 641-647, 653.
|
|
YANG J H, WU J, HU Y M. Backstepping method and its applications to nonlinear robust control[J]. Control and Decision, 2002, 17(S1): 641-647, 653 (in Chinese).
|
16 |
PENG Z H, WANG D, WANG J. Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(9): 2156-2167.
|
17 |
GE S S, WANG C. Direct adaptive NN control of a class of nonlinear systems[J]. IEEE Transactions on Neural Networks, 2002, 13(1): 214-221.
|
18 |
李铁山, 邹早建, 罗伟林. 基于DSC后推法的非线性系统的鲁棒自适应NN控制[J]. 自动化学报, 2008, 34(11): 1424-1430.
|
|
LI T S, ZOU Z J, LUO W L. DSC-backstepping based robust adaptive NN control for nonlinear systems[J]. Acta Automatica Sinica, 2008, 34(11): 1424-1430 (in Chinese).
|
19 |
LI Y X. Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems[J]. Automatica, 2019, 106: 117-123.
|
20 |
WAN P, ZENG Z G. Adaptive tracking control of state-constrained strict-feedback nonlinear systems using direct method[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(8): 5116-5126.
|
21 |
LI J H, KANG H, KIM M G, et al. Asymptotic trajectory tracking of underactuated non-minimum phase marine vessels[J]. IFAC-PapersOnLine, 2022, 55(31): 281-286.
|
22 |
LI J H. Path tracking of underactuated ships with general form of dynamics[J]. International Journal of Control, 2016, 89(3): 506-517.
|
23 |
LI J H, LEE P M. Path tracking in dive plane for a class of torpedo-type underactuated AUVs[C]∥ 2009 7th Asian Control Conference. Piscataway: IEEE Press, 2009: 360-365.
|
24 |
段广仁. 高阶系统方法: I.全驱系统与参数化设计[J]. 自动化学报, 2020, 46(7): 1333-1345.
|
|
DUAN G R. High-order system approaches: I. Fully-actuated systems and parametric designs[J]. Acta Automatica Sinica, 2020, 46(7): 1333-1345 (in Chinese).
|
25 |
段广仁. 高阶系统方法: Ⅱ.能控性与全驱性[J]. 自动化学报, 2020, 46(8): 1571-1581.
|
|
DUAN G R. High-order system approaches: Ⅱ. Controllability and full-actuation[J]. Acta Automatica Sinica, 2020, 46(8): 1571-1581 (in Chinese).
|
26 |
段广仁. 高阶系统方法: Ⅲ.能观性与观测器设计[J]. 自动化学报, 2020, 46(9): 1885-1895.
|
|
DUAN G R. High-order system approaches: Ⅲ. Observability and observer design[J]. Acta Automatica Sinica, 2020, 46(9): 1885-1895 (in Chinese).
|
27 |
DUAN G R. High-order fully actuated system approaches: Part II. Generalized strict-feedback systems[J]. International Journal of Systems Science, 2021, 52(3): 437-454.
|
28 |
DUAN G R. Substability and substabilization: Control of subfully actuated systems[J]. IEEE Transactions on Cybernetics, 2023, 53(11): 7309-7322.
|
29 |
DUAN G R. Fully actuated system approaches for continuous-time delay systems: Part 1. Systems with state delays only[J]. Science China Information Sciences, 2023, 66(1): 112201.
|
30 |
DUAN G R. Discrete-time delay systems: Part 2. Sub-fully actuated case[J]. Science China Information Sciences, 2022, 65(9): 1-15.
|
31 |
DUAN G R. High-order fully actuated system approaches: Part V. Robust adaptive control[J]. International Journal of Systems Science, 2021, 52(10): 2129-2143.
|
32 |
DUAN G R. High-order fully actuated system approaches: Part III. Robust control and high-order backstepping[J]. International Journal of Systems Science, 2021, 52(5): 952-971.
|
33 |
DUAN G R. Robust stabilization of time-varying nonlinear systems with time-varying delays: A fully actuated system approach[J]. IEEE Transactions on Cybernetics, 2023, 53(12): 7455-7468.
|
34 |
段广全,刘国平 等 .基于全驱系统方法的组合航天器位姿自适应预设性能控制[J/OL]. 航空学报, (2023-08-25)[2023-09-08]. .
|
|
DUAN G Q, LIU G P. Adaptive prescribed performance control for position and attitude of combined spacecraft based on fully actuated system approach [J/OL]. Acta Aeronautica et Astronautica Sinica, (2023-08-25)[2023-09-08]. (in Chinese).
|
35 |
XU X. High-order fully actuated system models for discrete-time strict-feedback systems with increasing dimensions[C]∥ 2023 2nd Conference on Fully Actuated System Theory and Applications (CFASTA). Piscataway: IEEE Press, 2023: 66-70.
|
36 |
DUAN G. A FAS approach for stabilization of generalized chained forms: Part I. Discontinuous controllers[J/OL]. Science China Information Sciences, (2023-04-07)[2023-09-08]. .
|