[1] Pond C M. The initiation of flight in unrestrained locusts, schistocerca gregaria[J]. Journal of Comparative Physiology, 1972, 80(2): 163-178.[2] Govind C K, Dandy J W T. Non-fibrillar muscles and the start and cessation of flight in the milkweed bug, oncopeltus[J]. Journal of Comparative Physiology, 1972, 77(4): 398-417.[3] Trimachi J R, Schneiderman A M. Initiation of flight in the unrestrained fly, drosophila melanogaster[J]. Journal of Zoology, 1995, 235(2): 211-222.[4] Card G, Dickinson M H. Performance trade-offs in the flight initiation of drosophila[J]. Journal of Experimental Biology, 2008, 211(3): 341-353.[5] Fontaine E I, Zabala F, Dickinson M H, et al. Wing and body motion during flight initiation in drosophila revealed by automated visual tracking[J]. Journal of Experimental Biology, 2009, 212(9): 1307-1323.[6] Sunada S, Kawachi K, Watanabe I, et al. Performance of a butterfly in take-off flight[J]. Journal of Experimental Biology, 1993, 183(1): 249-277.[7] Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production[J]. Journal of Experimental Biology, 1973, 59(1): 169-230.[8] Chen M W, Zhang Y L, Sun M. Wing and body motion and aerodynamic and leg forces during take-off in droneflies[J]. Journal of the Royal Society Interface, 2013, 10(89): 20130808.[9] Liu Y, Sun M. Wing kinematics measurement and aerodynamics of hovering droneflies[J]. Journal of Experimental Biology, 2008, 211(13): 2014-2025.[10] Mou X L, Liu Y P, Sun M. Wing motion measurement and aerodynamics of hovering true hoverflies[J]. Journal of Experimental Biology, 2011, 214(17): 2832-2844.[11] Ellington C P. The aerodynamics of hovering insect flight III: kinematics[J]. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 1984, 305(1122): 17-40.[12] Etkin B, Reid L D. Dynamics of flight: stability and control[M]. New York: Wiley, 1996: 310-315.[13] Aono H, Liang F, Liu H. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study[J]. Journal of Experimental Biology, 2008, 211(2): 239-257.[14] Liang B, Sun M. Aerodynamic interactions between contralateral wings and between wings and body of a model insect at hovering and small speed motions[J]. Chinese Journal of Aeronautics, 2011, 24(4): 396-409.[15] Yu X, Sun M. A computational study of the wing-wing and wing-body interactions of a model insect[J]. Acta Mechanica Sinica, 2009, 25(4): 421-431.[16] Rogers S E, Kwak D, Kiris C. Numerical solution of the incompressible Navier-Stokes equations for steady-state and dependent problems[J]. AIAA Journal, 1991, 29(4): 603-610.[17] Rogers S E, Pulliam T H. Accuracy enhancements for overset grids using a defect correction approach, AIAA-1994-0523[R]. Reston: AIAA, 1994.[18] Sun M, Yu X. Aerodynamic force generation in hovering flight in a tiny insect[J]. AIAA Journal, 2006, 44(7): 1532-1540.[19] Xiao T H, Ang H S, Zhou X C. Numerical method for unsteady flows of flexible flapping-wings[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 990-999. (in Chinese) 肖天航, 昂海松, 周新春. 柔性扑翼非定常流场的数值计算方法[J]. 航空学报, 2009, 30(6): 990-999.[20] Yang W Q, Song B F, Song W P. Distance decreasing method for confirming corresponding cells of overset grids and its application[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 205-212. (in Chinese) 杨文青, 宋笔锋, 宋文萍. 高效确定重叠网格对应关系的距离减缩法及其应用[J]. 航空学报,2009, 30(2): 205-212.[21] Zhao X, Guan H W, Yang Z, et al. An implicit and globally conservative unstructured chimera grid method, AIAA-2011-0777[R]. Reston: AIAA, 2011.[22] Zhang S J, Zhao X, Guan H W. Development of arbitrary unstructured chimera grid, AIAA-2014-0778[R]. Reston: AIAA, 2014. |