[1] Cao C X. One generation of material technology, one generation of large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 701-706. (in Chinese) 曹春晓. 一代材料技术,一代大型飞机[J]. 航空学报, 2008, 29(3): 701-706.[2] Sinmazelik T, Avcu E, Bora M , et al. A review: Fibre metal laminates, background, bonding types and applied test methods[J]. Materials & Design, 2011, 32(7): 3671-3685.[3] Reyes G, Kang H. Mechanical behavior of lightweight thermoplastic fiber-metal laminates[J]. Journal of Materials Processing Technology, 2007, 186(1-3): 284-290.[4] Gao Z Q, Zhong W H, Yang H C, et al. Surface activation methods of Ti and the effects on Ti/CFRP hybrid composite[J]. Acta Materiae Compositae Sinica, 2001, 18(3): 26-29. (in Chinese) 高志强, 仲伟虹, 杨鸿昌, 等. Ti表面处理及其对其层间混杂复合材料Ti/CFRP性能影响[J]. 复合材料学报, 2001, 18(3): 26-29.[5] Lawcock G, Ye L, Mai Y, et al. The effect of adhesive bonding between aluminum and composite prepreg on the mechanical properties of carbon-fiber-reinforced metal laminates[J]. Composites Science and Technology, 1997, 57(1): 35-45.[6] Matz C. Optimization of the durability of structural titanium adhesive joints[J]. International Journal of Adhesion and Adhesives, 1988, 8(1): 17-24.[7] Mertens T, Gammel F J, Kolb M, et al. Investigation of surface pre-treatments for the structural bonding of titanium[J]. International Journal of Adhesion and Adhesives, 2012, 34: 46-54.[8] Molitor P, Barron V, Young T. Surface treatment of titanium for adhesive bonding to polymer composites: a review[J]. International Journal of Adhesion and Adhesives, 2001, 21(2): 129-136.[9] Gao S, Kim J. Cooling rate influences in carbon fibre/PEEK composites. Part II: interlaminar fracture toughness[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(6): 763-774.[10] Zhang L, Wang B, Jiao G Q, et al. Influence of fiber bridging on mode I interlaminar fracture toughness of composites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 817-825. (in Chinese) 张龙, 王波, 矫桂琼, 等. 纤维桥连对复合材料I型层间断裂韧性的影响[J]. 航空学报, 2013, 34(4): 817-825.[11] Gong X J, Hurez A, Verchery G. On the determination of delamination toughness by using multidirectional DCB specimens[J]. Polymer Testing, 2010, 29(6): 658-666.[12] Liu J H, Wu L, Li S M, et al. Preparation and characterization of anodic oxide film on titanium alloy Ti-10V-2Fe-3Al in sodium oxalate electrolyte[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 852-856. (in Chinese) 刘建华, 吴量, 李松梅, 等. 草酸钠体系中Ti-10V-2Fe-3Al钛合金阳极氧化膜的制备与表征[J]. 航空学报, 2010, 31(4): 852-856.[13] Xu X C, Wang X W, Li H, et al. Effect of alkaline anodization treatment on durability of titanium/epoxy bonded joint[J]. Aeronautical Manufacturing Technology, 1996(4): 8-11.(in Chinese) 徐修成, 王晓蔚, 李虎, 等. 碱性阳极化处理对钛合金/环氧胶接接头耐久性的影响[J]. 航空工艺技术, 1996(4): 8-11.[14] He P, Chen K, Yu B, et al. Surface microstructures and epoxy bonded shear strength of Ti6Al4V alloy anodized at various temperatures[J]. Composites Science and Technology, 2013, 82: 15-22.[15] Kern M, Lehmann F. Influence of surface conditioning on bonding to polyetheretherketon (PEEK)[J]. Dental Materials, 2012, 28(12): 1280-1283.[16] de Morais A B. Double cantilever beam testing of multidirectional laminates[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(12): 1135-1142.[17] Shokrieh M M, Heidari-Rarani M, Ayatollahi M R. Delamination R-curve as a material property of unidirectional glass/epoxy composites[J]. Materials & Design, 2012, 34: 211-218. |