[1] Greathouse J S, Kirk B S, Lillard R P, et al. Crew exploration vehicle (CEV) crew module shape selection and CEV aeroscience project overview, AIAA-2007-0603[R]. Reston: AIAA, 2007.[2] Berry S A, Horvath T J, Lillard R P, et al.Aerothermal testing for project orion crew exploration vehicle, AIAA-2009-3842[R]. Reston: AIAA, 2009.[3] Wu Z Q, Cheng H, Zhang W, et al. Effects of thermal environment on dynamic properties of aerospace vehicle panel structures[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 334-342.(in Chinese) 吴振强, 程昊, 张伟, 等. 热环境对飞行器壁板结构动特性的影响[J]. 航空学报, 2013, 34(2): 334-342.[4] Robinson J S, Wurster K E, Mills J C. Entry trajectory and aeroheating environment definition for capsule-shaped vehicles[J]. Journal of Spacecraft and Rockets, 2009, 46(1): 74-86.[5] Engel C D, Praharaj S C. MINIVER upgrade for the AVID system, vol. I: LANMIN user's manual[R]. NASA CR-172212, 1983.[6] Subrahmanyam P. High-fidelity aerothermal engineering analysis for planetary probes using DOTNET framework and OLAP cubes database[J]. International Journal of Aerospace Engineering, 2009(1): 1-21.[7] Otero R E, Braun R D. The planetary entry systems synthesis tool: a conceptual design and analysis tool for EDL systems[C]//2010 IEEE Aerospace Conference, 2010: 1-16.[8] Park C. Stagnation-region heating environment of the Galileo probe[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 417-424.[9] Anderson J D. Hypersonic and high temperature gas dynamics[M]. New York: McGraw-Hill, 1989: 156-168.[10] Wright M, Loomis M, Padadopoulos P. Aerothermal analysis of the project fire Ⅱ afterbody flow, AIAA-2001-3065[R]. Reston: AIAA, 2001.[11] Bertin J J. Hypersonic aerothemodynamics[M]. Washington: AIAA, 1994: 231-267.[12] Fay J A, Riddell F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences, 1958, 2(25): 73-85.[13] Milos F S, Chen Y K. Ablation predictions for carbonaceous materials using CEA and JANNAF-based species thermodynamics[C]//42th AIAA Thermophysics Conference, 2011: 3123-3139.[14] Potts R L. Application of integral methods to ablation charring erosion, a review[J]. Journal of Spacecraft and Rockets, 1995, 32(2): 200-209.[15] Hu R F, Wu Z N, Qi X, et al. Debris reentry and ablation prediction and ground risk assessment software system[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 390-399. (in Chinese) 胡锐锋, 吴子牛, 曲溪, 等. 空间碎片再入烧蚀预测与地面安全评估软件系统[J]. 航空学报, 2011, 32(3): 390-399.[16] Gupta R N, Yos J M, Thompson R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species sir model for chemical and thermal non-equilibrium calculations to 300 000 K[R]. NASA RP-1232, 1990.[17] Park C, Lee S H. Validation of multi-temperature nozzle flow code noznt[R]. AIAA-1993-2862, 1993.[18] Quinn R D, Gong L. Real time aerodynamic heating and surface temperature calculations for hypersonic flight simulation[R]. NASA TM-4222, 1990.[19] Spalding D B. Convective mass transfer[M]. New York: McGraw-Hill, 1963: 156-168.[20] Milos F S, Rassky D J. Review of numerical procedures for computational surface thermochemistry[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1): 24-34.[21] Potts R L. On heat integral solutions of carbonaceous ablator response during re-entry, AIAA-1984-1677[R]. Reston: AIAA, 1984.[22] Arpaci V S. Conduction heat transfer[M]. Palo Alto: Addison-Wesely, 1966: 248-257. |