[1] Lezberg E A, Metzler A J, Pack W D. In-stream measurements of combustion during Mach 5 to 7 tests of the hypersonic research engine (HRE), AIAA-1993-2324[R]. Reston: AIAA, 1993.[2] Voland R T, Auslende A H, Smart M K. CIAM/NASA Mach 6.5 scramjet flight and ground test, AIAA-1999-4848[R]. Reston: AIAA, 1999.[3] Cockrell C E, Auslender A H, Jr., White J A. Aeroheating predictions for the X-43 cowl-closed configuration at Mach 7 and 10, AIAA-2002-0218[R]. Reston: AIAA, 2002.[4] Hank J M, Murphy J S, Mutzman R C. The X-51A scramjet engine flight demonstration program, AIAA-2008-2540[R]. Reston AIAA, 2008.[5] Pan J, Zhang K Y, Jin Z G. Design and numerical investigation of curved check shock compression surface[J]. Journal of Propulsion Technology, 2008, 29(4): 438-442.(in Chinese) 潘瑾, 张堃元, 金志光. 弯曲激波压缩型面的设计及数值分析[J]. 推进技术, 2008, 29(4): 438-442.[6] Trexler C A. Performance of an inlet for an integrated scramjet concept[J]. Journal of Aircraft, 1974, 11(9): 589-591.[7] Hiraiwa T, Kanda T, Mitani T, et al. Experiments on a scramjet engine with ramp-compression inlet at Mach 8 condition, AIAA-2002-4129[R]. Reston: AIAA, 2002.[8] Mölder S, Szpiro J. Busemann inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets, 1966, 3(8): 1303-1304.[9] Sun B, Zhang K Y, Jin Z G, et al. Selection of design parameters for streamtraced hypersonic Busemann inlets[J]. Journal of Propulsion Technology, 2007, 28(1): 55-59. (in Chinese) 孙波, 张堃元, 金志光, 等.流线追踪 Busemann进气道设计参数的选择[J]. 推进技术, 2007, 28(1): 55-59.[10] Vijay R, Lewis M, Starkey R. Performance of various truncation strategies employed on hypersonic Busemann inlets, AIAA-2009-7249[R]. Reston: AIAA, 2009.[11] Smart M K. Design of three-dimensional hypersonic inlets with rectangular to elliptical shape transition, AIAA-1998-0960[R]. Reston: AIAA, 1998.[12] Smart M K, Trexler C A. Mach 4 performance of a fixed-geometry hypersonic inlet with rectangular-to-elliptical shape transition, AIAA-2003-0012[R]. Reston: AIAA, 2003.[13] Matthews A J, Jones T V. Design and test of a modular waverider hypersonic intake, AIAA-2005-3379[R]. Reston: AIAA, 2005.[14] Nan X J, Zhang K Y, Jin Z G, et al. Investigation on hypersonic inward turning inlets with controlled pressure gradient[J]. Journal of Aerospace Power, 2011, 26(3): 518-522.(in Chinese) 南向军, 张堃元, 金志光, 等. 压升规律可控的高超声速内收缩进气道设计[J]. 航空动力学报, 2011, 26(3): 518-522.[15] Nan X J, Zhang K Y, Jin Z G, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 988-996. (in Chinese) 南向军, 张堃元, 金志光, 等. 矩形转圆形高超声速内收缩进气道数值及试验研究[J]. 航空学报, 2011, 32(6): 988-996.[16] Nan X J, Zhang K Y. Analysis of hypersonic inward turning inlets with innovative axisymmetric basic flowfield[J]. Journal of Astronautics, 2012, 33(2):254-259. (in Chinese) 南向军, 张堃元. 采用新型基准流场高超内收缩进气道性能分析[J]. 宇航学报, 2012, 33(2): 254-259.[17] Nan X J, Zhang K Y. Numerical and experimental investigation on hypersonic inward turning inlets with basic flowfield using arc tangent curve law of pressure rise, AIAA-2011-2270[R]. Reston: AIAA, 2011. |