Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (21): 532386.doi: 10.7527/S1000-6893.2025.32386
• Special Issue: 60th Anniversary of Aircraft Strength Research Institute of China • Previous Articles
Shijie XU1,2, Weihong ZHANG1(
)
Received:2025-06-09
Revised:2025-06-23
Accepted:2025-07-14
Online:2025-08-12
Published:2025-07-30
Contact:
Weihong ZHANG
E-mail:zhangwh@nwpu.edu.cn
Supported by:CLC Number:
Shijie XU, Weihong ZHANG. A high-order asymptotic expansion analysis method for generalized periodic lattice structures[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(21): 532386.
Table 1
Comparison of result and error among four different computing methods
| 参数 | 单胞数目 | 计算方法 | 应力场 分布 | 最大Von-Mises 等效应力/MPa | 应力 误差/% | 最大 位移/mm | 最大位移 误差/% |
|---|---|---|---|---|---|---|---|
| 直接离散 | 4.29 | 53.83 | |||||
| 经典周期高阶 | 3.00 | 30.0 | 46.55 | 13.5 | |||
| 广义周期高阶 | 3.62 | 15.6 | 50.47 | 6.3 | |||
| 广义周期零阶 | 2.16 | 49.5 | 49.92 | 7.8 | |||
| 直接离散 | 4.48 | 52.21 | |||||
| 经典周期高阶 | 3.15 | 29.7 | 46.55 | 10.8 | |||
| 广义周期高阶 | 3.98 | 13.1 | 50.47 | 3.6 | |||
| 广义周期零阶 | 2.26 | 49.5 | 49.92 | 4.6 | |||
| 直接离散 | 4.72 | 51.52 | |||||
| 经典周期高阶 | 3.32 | 29.6 | 46.55 | 9.7 | |||
| 广义周期高阶 | 4.20 | 11.1 | 50.47 | 2.2 | |||
| 广义周期零阶 | 2.51 | 46.7 | 49.92 | 3.1 | |||
| 直接离散 | 5.61 | 62.05 | |||||
| 经典周期高阶 | 2.99 | 46.6 | 46.55 | 25.0 | |||
| 广义周期高阶 | 4.86 | 13.3 | 60.58 | 4.2 | |||
| 广义周期零阶 | 3.56 | 36.6 | 59.85 | 5.3 | |||
| 直接离散 | 6.00 | 61.80 | |||||
| 经典周期高阶 | 3.14 | 47.5 | 46.55 | 24.7 | |||
| 广义周期高阶 | 5.42 | 9.6 | 60.58 | 2.1 | |||
| 广义周期零阶 | 3.88 | 35.3 | 59.85 | 3.7 | |||
| 直接离散 | 6.30 | 61.49 | |||||
| 经典周期高阶 | 3.11 | 47.2 | 46.55 | 24.3 | |||
| 广义周期高阶 | 5.86 | 6.9 | 60.58 | 1.5 | |||
| 广义周期零阶 | 4.02 | 36.2 | 59.85 | 2.7 |
Table 2
Maximum Von-Mises equivalent stress and error of rotationally symmetrical generalized periodic lattice structure
单胞 数目 | 精细尺度有限元直接离散 (直接离散) | 广义周期高阶渐近展开 (广义周期高阶) | 广义周期零阶渐近展开 (广义周期零阶) | |||||
|---|---|---|---|---|---|---|---|---|
| 时间/s | 最大Von-Mises 等效应力/MPa | 时间/s | 最大Von-Mises 等效应力/MPa | 误差/% | 时间/s | 最大Von-Mises 等效应力/MPa | 误差/% | |
| 676 | 1.636 9 | 14.4 | 1.619 2 | 1.08 | 9.4 | 1.398 2 | 14.6 | |
| 1 287 | 1.648 0 | 26.9 | 1.640 9 | 0.43 | 9.4 | 1.428 4 | 13.3 | |
| 4 268 | 1.653 8 | 46.9 | 1.647 8 | 0.30 | 9.4 | 1.445 7 | 12.6 | |
Table 3
First five natural frequencies and errors obtained from fine-scale finite element direct discretization and generalized periodic high-order asymptotic expansion method
| 单胞数目 | 计算方法 | 计算时间/s | 模态振型 | 第1阶 | 第2阶 | 第3阶 | 第4阶 | 第5阶 |
|---|---|---|---|---|---|---|---|---|
| 直接离散 | 199.5 | 21.09 | 42.85 | 57.41 | 66.30 | 92.06 | ||
广义周期零阶 广义周期高阶 | 9.4 | 20.53 | 40.08 | 58.56 | 67.63 | 76.42 | ||
| 相较直接离散误差/% | 2.7 | 6.5 | 2.0 | 2.0 | 17.0 | |||
| 同振型误差 | 2.7 | 6.5 | 11.7 | 17.8 | 17.0 | |||
| 直接离散 | 792.0 | 20.86 | 41.04 | 61.05 | 65.57 | 81.68 | ||
广义周期零阶 广义周期高阶 | 9.4 | 20.53 | 40.08 | 58.56 | 67.63 | 76.42 | ||
| 相较直接离散误差/% | 1.6 | 2.3 | 4.1 | 3.1 | 6.4 | |||
| 直接离散 | 2707.1 | 20.67 | 40.37 | 59.18 | 67.07 | 77.68 | ||
广义周期零阶 广义周期高阶 | 9.4 | 20.53 | 40.08 | 58.56 | 67.63 | 76.42 | ||
| 相较直接离散误差/% | 0.7 | 0.7 | 1.0 | 0.8 | 1.6 |
| [1] | COMPTON B G, LEWIS J A. 3D printing: 3D-printing of lightweight cellular composites (adv. mater. 34/2014)[J]. Advanced Materials, 2014, 26(34): 6043. |
| [2] | Intralattice[EB/OL]. (2023-03-03)[2024-08-12]. . |
| [3] | LIU Z Q, MEYERS M A, ZHANG Z F, et al. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications[J]. Progress in Materials Science, 2017, 88: 467-498. |
| [4] | ZHAO Z L, ZHOU S W, FENG X Q, et al. Morphological optimization of scorpion telson[J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103773. |
| [5] | OSORIO L, TRUJILLO E, VAN VUURE A W, et al. Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites[J]. Journal of Reinforced Plastics and Composites, 2011, 30(5): 396-408. |
| [6] | CHEN W J, ZHENG X N, LIU S T. Finite-element-mesh based method for modeling and optimization of lattice structures for additive manufacturing[J]. Materials, 2018, 11(11): 2073. |
| [7] | ZHAO Z L, ZHOU S W, FENG X Q, et al. On the internal architecture of emergent plants[J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 224-239. |
| [8] | STROMBERG L L, BEGHINI A, BAKER W F, et al. Application of layout and topology optimization using pattern gradation for the conceptual design of buildings[J]. Structural and Multidisciplinary Optimization, 2011, 43(2): 165-180. |
| [9] | YE Q, GUO Y, CHEN S K, et al. Topology optimization of conformal structures on manifolds using extended level set methods (X-LSM) and conformal geometry theory[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 164-185. |
| [10] | TANG Y L, KURTZ A, ZHAO Y F. Bidirectional Evolutionary Structural Optimization (BESO) based design method for lattice structure to be fabricated by additive manufacturing[J]. Computer-Aided Design, 2015, 69: 91-101. |
| [11] | NGUYEN J, PARK S I, ROSEN D. Heuristic optimization method for cellular structure design of light weight components[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(6): 1071-1078. |
| [12] | TANG Y L, DONG G Y, ZHAO Y F. A hybrid geometric modeling method for lattice structures fabricated by additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(9): 4011-4030. |
| [13] | DEDÈ L, BORDEN M J, HUGHES T J R. Isogeometric analysis for topology optimization with a phase field model[J]. Archives of Computational Methods in Engineering, 2012, 19(3): 427-465. |
| [14] | MOSES E, FUCHS M B, RYVKIN M. Topological design of modular structures under arbitrary loading[J]. Structural and Multidisciplinary Optimization, 2002, 24(6): 407-417. |
| [15] | GAO T, ZHANG W H. Topology optimization involving thermo-elastic stress loads[J]. Structural and Multidisciplinary Optimization, 2010, 42(5): 725-738. |
| [16] | MAHARAJ Y, JAMES K A. Metamaterial topology optimization of nonpneumatic tires with stress and buckling constraints[J]. International Journal for Numerical Methods in Engineering, 2020, 121(7): 1410-1439. |
| [17] | ZUO Z H, XIE Y M, HUANG X D. Optimal topological design of periodic structures for natural frequencies[J]. Journal of Structural Engineering, 2011, 137(10): 1229-1240. |
| [18] | XU Z, ZHANG W H, ZHOU Y, et al. Multiscale topology optimization using feature-driven method[J]. Chinese Journal of Aeronautics, 2020, 33(2): 621-633. |
| [19] | WANG C, ZHU J H, ZHANG W H, et al. Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures[J]. Structural and Multidisciplinary Optimization, 2018, 58(1): 35-50. |
| [20] | ZHU J H, ZHOU H, WANG C, et al. A review of topology optimization for additive manufacturing: Status and challenges[J]. Chinese Journal of Aeronautics, 2021, 34(1): 91-110. |
| [21] | BABUŠKA I. Homogenization approach in engineering[C]∥Computing Methods in Applied Sciences and Engineering. Berlin: Springer, 1976: 137-153. |
| [22] | KESAVAN S. Homogenization of elliptic eigenvalue problems: Part 1[J]. Applied Mathematics and Optimization, 1979, 5(1): 153-167. |
| [23] | KESAVAN S. Homogenization of elliptic eigenvalue problems: Part 2[J]. Applied Mathematics and Optimization, 1979, 5(1): 197-216. |
| [24] | BENSOUSSAN A, LIONS J L, PAPANICOLAOU G. Asymptotic analysis for periodic structures[M]. Providence, R.I. American Mathematical Society, 2011 |
| [25] | BRIANE M. Three models of non periodic fibrous materials obtained by homogenization[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 1993, 27(6): 759-775. |
| [26] | TSALIS D, BAXEVANIS T, CHATZIGEORGIOU G, et al. Homogenization of elastoplastic composites with generalized periodicity in the microstructure[J]. International Journal of Plasticity, 2013, 51: 161-187. |
| [27] | TSALIS D, CHATZIGEORGIOU G, CHARALAMBAKIS N. Homogenization of structures with generalized periodicity[J]. Composites Part B: Engineering, 2012, 43(6): 2495-2512. |
| [28] | 徐仕杰, 张卫红. 广义周期点阵结构的等效性能均匀化映射方法研究[J]. 中国科学(技术科学), 2024, 54(6): 1036-1056. |
| XU S J, ZHANG W H. Research on equivalent performance homogenization mapping method of generalized periodic lattice structure[J]. SCIENTIA SINICA Technologica, 2024, 54(6): 1036-1056 (in Chinese). | |
| [29] | XU S J, ZHANG W H. Energy-based homogenization method for lattice structures with generalized periodicity[J]. Computers & Structures, 2024, 302: 107478. |
| [30] | DONG H, ZHENG X J, CUI J Z, et al. Multi-scale computational method for dynamic thermo-mechanical performance of heterogeneous shell structures with orthogonal periodic configurations[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 354: 143-180. |
| [31] | YANG Z Q, LIU Y Z, SUN Y, et al. A second-order reduced multiscale method for nonlinear shell structures with orthogonal periodic configurations[J]. International Journal for Numerical Methods in Engineering, 2022, 123(1): 128-157. |
| [32] | TOMPSON A F B. Numerical simulation of chemical migration in physically and chemically heterogeneous porous media[J]. Water Resources Research, 1993, 29(11): 3709-3726. |
| [33] | HOU T Y, WU X H. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of Computational Physics, 1997, 134(1): 169-189. |
| [34] | CAO L Q, CUI J Z. Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains[J]. Numerische Mathematik, 2004, 96(3): 525-581. |
| [35] | CAO L Q. Iterated two-scale asymptotic method and numerical algorithm for the elastic structures of composite materials[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(27-29): 2899-2926. |
| [36] | OLEINIK O A, SHAMAEV A S, YOSIFIAN G A. Mathematical problems in elasticity and homogenization[M]. Amsterdam: Elsevier Science Publishers B.V., 2012. |
| [37] | GHOSH S, LEE K, MOORTHY S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 132(1-2): 63-116. |
| [38] | SCHRÖDER J. A numerical two-scale homogenization scheme: The FE2-method[M]∥Plasticity and Beyond. Vienna: Springer Vienna, 2014: 1-64. |
| [39] | RAO Y P, XIANG M Z, CUI J Z. A strain gradient brittle fracture model based on two-scale asymptotic analysis[J]. Journal of the Mechanics and Physics of Solids, 2022, 159: 104752. |
| [40] | 曹礼群, 崔俊芝, 王崇愚. 非均质材料多尺度物理问题与数学方法[C]∥中国科学院技术科学论坛学术报告会. 2002. |
| CAO L Q, CUI J Z, WANG C Y. Multi-scale physical problems and mathematical methods for heterogeneous materials[C]∥Academic Report Meeting of the Technology Science Forum of China Academy of Sciences. 2002 (in Chinese). | |
| [41] | 张卫红, 徐仕杰, 朱继宏. 循环对称结构的多尺度拓扑优化方法[J]. 计算力学学报, 2021, 11(4): 512-522. |
| ZHANG W H, XU S J, ZHU J H. Multi-scale topology optimization method for cyclic symmetric structures[J]. Chinese Journal of Computational Mechanics, 2021, 11(4): 512-522 (in Chinese). |
| [1] | Wei LI, Xin SONG, Xiangqi LIN, Zhilin SU, Chengbo WANG, Tong LI. Fast optimization method for nail load homogenization of composite joint structures [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(23): 230345-230345. |
| [2] | Xiaogang XU, Yang ZHANG, Tianbo WANG, Xudong MA, Gang CHEN. Mixing enhancement effect of multi-size water droplet spray [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729130-729130. |
| [3] | Xiaoqian CHEN, Yong ZHAO, Senlin HUO, Zeyu ZHANG, Bingxiao DU. A review of topology optimization design methods for multi-scale structures [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528863-528863. |
| [4] | LONG Kai, CHEN Zhuo, GU Chunlu, WANG Xuan. Structural topology optimization method with maximum displacement constraint on load-bearing surface [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 223577-223577. |
| [5] | LI Zengcong, TIAN Kuo, ZHAO Haixin. Efficient variable-fidelity models for hierarchical stiffened shells [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 623435-623435. |
| [6] | LI Peng, ZHOU Wanlin, LI Bei, SHAO Jintao. Pin-load distribution homogenization method of adjusting bolt-hole clearance and bolt torqued in multi-bolt composite joints [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(3): 422548-422548. |
| [7] | GAO Tao, QI Wenkai, SHEN Cheng. Prediction of FRP stiffness based on a new implementation of homogenization method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(5): 220579-220579. |
| [8] | WANG Bo, TIAN Kuo, ZHENG Yanbing, HAO Peng, ZHANG Ke. A rapid buckling analysis method for large-scale grid-stiffened cylindrical shells [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(2): 220379-220387. |
| [9] | LONG Kai, GU Xianguang, WANG Xuan. Lightweight design method for continuum structure under vibration using multiphase materials [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(10): 221022-221022. |
| [10] | XING Yufeng, CHEN Lei. Accuracy analysis of mathematical homogenization method for several periodical composite structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(5): 1520-1529. |
| [11] | Wang Xingming;Xing Yufeng. Developments in Research on 3D Braided Composites [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(5): 914-927. |
| [12] | Sun Shiping;Qin Guohua;Zhang Weihong. Integrated Optimal Design of Multiphase Porous Materials and Structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(1): 186-192. |
| [13] | Xu Yingjie;Zhang Weihong;Yang Jungang;Wang Haibin. Prediction of Effective Elastic Modulus of Plain Weave Multi-phase and Multi-layer Silicon Carbide Ceramic Matrix Composite [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 29(5): 1350-1355. |
| [14] | ZHANG Wei-hong;WANG Lei;SUN Shi-ping. Topology Optimization for Microstructures of Composite Materials Based on Thermal Conductivity [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(6): 1229-1233. |
| [15] | ZHU Ji-hong;ZHANG Wei-hong;QIU Ke-peng. Investigation of Localized Modes in Topology Optimization of Dynamic Structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(4): 619-623. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

